Report No. FHWA-RD-76-116

URBAN STORM RUNOFF INLET HYDROGRAPH STUDY

Vol. 1. Computer Analysis of Runoff from Urban Highway Watersheds under Time - and Space-Varying Rainstorms

March 1976 Final Report

This document is available to the public through the National Technical Information Service, Springfield, Virginia 22161

Prepared for FEDERAL HIGHWAY ADMINISTRATION Offices of Research & Development Washington, D.C. 20590

NOTICE

e. . . -

This document is disseminated under the sponsorship of the Department of Transportation in the interest of information exchange. The United States Government assumes no liability for its contents or use thereof.

The contents of this report reflect the views of the Utah Water Research Laboratory, which is responsible for the facts and accuracy of the data presented herein. The contents do not necessarily reflect the official views or policy of the Department of Transportation. This report does not constitute a standard, specification, or regulation.

The United States Government does not endorse products or manufacturers. Trade or manufacturers' names appear herein only because they are considered essential to the object of this document.

TECHNICAL REPORT STANDARD TITLE PAGE

1. Report No. FHWA-RD-76-116	2. Government Assession No.		3. Recipient's Catal	log No.
4. Title and Subtitle URBAN STORM RUNOFF INLET Vol. 1. Computer Analysis of Run under Time- and Space-Varying Ra	HYDROGRAPH STUDY off from Urban Highway Waters instorms	heds	5. Report Date March 1976 6. Performing Orga	nization Code
7. Author(s) C. L. Chen	میں پر جانوبی کا انتخاب میں میں میں میں میں میں میں ایک ایک رہیں ہوئی کا انتظام ہوتی ہوا۔ انتظام ہے جب		8. Performing Orga PRWG 106-1	nization Report No.
9. Performing Organization Name a	nd Address	1	0. Work Unit No.	
Utah Water Research Laboratory Utah State University Logan, Utah 84322			 Contract or Gran DOT-FH-11-7806 Type of Report 	nt No. and Period Covered
12. Sponsoring Agency Name and A Offices of Research and Developme Federal Highway Administration	Address		Final Report 4. Sponsoring Ager	ncy Code
U.S. Department of Transportation Washington, D.C. 20590			66.20	· C•
15. Supplementary Notes	<u></u>			-
FHWA contract manager: D. C. Wo	00			
16. Abstract				
The main objective of this study is surface runoff, with average recurre routing technique.	to develop an accurate design monocommended needed and the second s	ethod fo ears, fro	or computing inlet i om typical urban h	hydrographs of ighway by flood
The most comprehensive mathemat puting the runoff inlet hydrograph. efficient and accurate technique wa all the rainfall-runoff processes on a by comparing the computed inlet h field experiments and from typical experiments indicate that the devel hydrographs for typical highway created	ical model based on the method All flood routing methods were s adopted for the formulation of highway watershed. Accuracy ydrographs with field data obtai highway cross-sections in the Sal opment of a unified dimensionle oss-sections seems possible.	of char e extens f a nume of the c ned bot It Lake ss inlet	acteristics was deve ively reviewed and erical (computer) n omputer model wa h from the Corps o City area. A few en hydrograph or a fan	eloped for com- the most nodel including s then examined of Engineers air- xploratory computer mily of such
This volume is the first in a series.	The others in the series are:			
Vol. FHWA No. No.	Short Title		NTIS (if a	S(PB) No. available)
2 76-117 Labo 3 76-118 Hyd 4 76-119 Synt 5 76-120 Para	ratory Studies of Sheet Flows cologic Data for Highway Waters hetic Storms for Design of High netric Infiltration Models for Sig	heds way leslopes	(nót (not (not s (not	yet available) yet available) yet available) yet available)
17. Key Words	18. Distribu	tion Sta	tement	
Analysis, Computer, Experiments, I Highway, Hydrographs, Hydrology, cal models, Rainfall, Runoff, Storm sheds	Flood routing, Inlet, Mathemati- s, Urban, Water-	on. Thi Nation Virgini	s document is avail al Technical Inforn a 221 6 1	able to the public nation Service,
19. Security Classif. (of this report	20. Security Classif. (of this	page)	21. No. of Pages	22. Price
Unclassified	Unclassified		273	

1

PREFACE

The work described in this report was performed under contract DOT-FH-11-7806, entitled ''Urban Storm Runoff Inlet Hydrograph Study'' between the Federal Highway Administration and Utah State University. This research contract aimed at the development of an accurate design method for computing inlet hydrographs of surface runoff under intense rainstorms on urban highways. One of the major tasks in this research project was the development of the most accurate mathematical model for computing the runoff inlet hydrograph. All flood routing methods were extensively reviewed and the most efficient and accurate technique was adopted for the formulation of a computer model including all the rainfallrunoff processes on a highway watershed. Accuracy of the computer model was then checked by comparing the computed inlet hydrographs with field data obtained in the field phase of the research. The work reported herein is part of the analytical phase of the project.

The research was conducted under the general direction and supervision of Dr. Cheng-lung Chen, Professor of Civil and Environmental Engineering at Utah State University. During this study, Min-shoung Chu, Graduate Research Assistant, and Dr. George C. Shih, Research Engineer, at the Utah Water Research Laboratory, helped formulate the surface runoff computer model. The original computer program was written by Mr. Chu as part of his dissertation entitled "Hydrodynamics of Runoff from Road Surfaces under Moving Rainstorms," submitted in 1973 in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Civil and Environmental Engineering, Utah State University, Logan, Utah. Subsequent modifications were made by Dr. Shih and mainly by the author in an attempt to correct inaccuracies found in the original program. The computer program was greatly expanded by the author to include the computation of the inlet hydrographs resulting from heavy storms under various drainage conditions in highway watersheds. Gratitude is due Dr. Shih for his assistance in the formulation of the drainage-area correction factor (Eq. 67) used in the computation of surface runoff on the curved roadway.

The contract was monitored by Dr. D. C. Woo, Contract Manager, Environmental Design and Control Division, Federal Highway Administration. The author is indebted to him for his idea to initiate this study and overall research plan, detailed discussions of research conduct of all phases, and critical reviews and comments of the results during the course of the work.

TABLE OF CONTENTS

1	age
INTRODUCTION	1
Development of Urban Runoff Models	1
Objectives and Scope of the Present Study	4
LITERATURE REVIEW OF RUNOFF MCDELING AND	
ROUTING TECHNIQUES	8
Surface Runoff Models	8
Numerical Techniques	9
MATHEMATICAL FORMULATION OF SURFACE RUNOFF	12
Flow Equations	12
The equation of continuity	12
The equation of momentum	14
Evaluation of the friction slope	18
Initial Conditions	19
Boundary Conditions	19
External boundary conditions	21
Internal boundary conditions	21
NUMERICAL MODEL USING THE METHOD OF CHARACTERISTICS	25
An Wyplicit Scheme with Specified Intervals	29
The Procedures of Computation	36
ine rocedutes of somplication	50
Mathematical expression of cross profile for	
roadway	36
Arrangement of overland flow and gutter flow	
sections	38
Elementary drainage area for curved roadway	40
Reference (or normalizing) quantities	44
Assuming initial conditions	45
Evaluation of the friction coefficient	47
boundary conditions	53

TABLE OF CONTENTS (Continued)

			Page
Geometric elements of gutter flow section . Location of critical section	•	•	• 64 • 64
PARAMETRIC INFILTRATION MODEL FOR SIDESLOPE	•	•	. 67
DESIGN STORM PATTERNS	•	•	. 70
Hyetograph Equations	•	•	. 71
Case (1): For positive b Case (2): For negative b ($c < 1$)	•	•	• 71 • 71
Mean Rainfall Intensity	•	٠	• 72
Case (1): For positive b	•	•	. 73 . 73
ACCURACY OF THE MATHEMATICAL MODEL	•	•	. 75
Examination of Overland Flow Computer Sub-model . Examination of Combined Flow Computations	•	•	• 75 • 87
Input data	•	•	. 87 . 91
COMPUTATION OF RUNOFF FROM TYPICAL URBAN HIGHWAY			
CROSS-SECTIONS	•	•	. 105
Runoff from Roadway with Curb-Type Gutter	•	•	. 107
Accuracy of the computed hydrograph Development of dimensionless inlet hydrograph	•	•	• 109 • 112
SUMMARY AND CONCLUSIONS	•	•	. 114
RECOMMENDATIONS	•	•	. 117
REFERENCES	•		. 118

TABLE OF CONTENTS (Continued)

		Page
APPENDICES		128
Appendix 1:	Evaluation of the Momentum and Energy	
	Coefficients	129
Appendix 2:	Expressions of Geometric Elements for	
	Curb-Type Gutter Flow Section	132
Appendix 3:	Initial Abstraction by Using the SCS	
	Rainfall-Runoff Relation	137
Appendix 4:	The Computer Program	142

v

2

LIST OF FIGURES

Figure		Page
1.	Definition sketch for flow profile	13
2.	Plan view of internal boundary between overland flow and channel flow	13
3.	Selection of friction coefficient, f	20
4.	Explicit scheme with specified grid intervals	30
5.	Location of characteristic curves	33
6.	Typical cross (or crown) slope of roadway	37
7.	Contour lines and flow lines on the road surface . $\ .$	39
8.	The routing arrangement of overland flow and gutter flow	41
9.	An elementary drainage area of the curved roadway .	43
10.	The value of friction slope, S_f , evaluated by the energy equation	48
11.	Relationship between C value, S, and k \ldots .	52
12.	Grid points at upstream end and downstream end $\ .$.	54
13.	Generation of the discontinuous water surface	59
14.	Propagation of a discontinuity	59
15.	Internal boundary between overland flow and gutter flow	63
16.	Fixed channel type gutter flow	65
17.	Comparison of measured and computed hydrographs for run 1 of Los Angeles District Corps of Engineers Airfield Experiment	79
18.	Comparison of measured and computed hydrographs for run 2 of Los Angeles District Corps of Engineers	90
	Alfileid Experiment	00

.

LIST OF FIGURES (Continued)

Figure			Page
19.	Comparison of measured and computed hydrographs for run 3 of Los Angeles District Corps of Engineers Airfield Experiment	٠	81
20.	Comparison of measured and computed hydrographs for run 4 of Los Angeles District Corps of Engineers Airfield Experiment	•	82
21.	Comparison of measured and computed hydrographs for run 5 of Los Angeles District Corps of Engineers Airfield Experiment	• ,	83
22.	Comparison of measured and computed hydrographs for run 6 of Los Angeles District Corps of Engineers Airfield Experiment	•	84
23.	Comparison of computed hydrographs for various distance intervals or number of grid points used in the computation of run 1	•	88
24.	Typical urban highway cross-sections in the Salt Lake City area	•	89
25.	Measured October 4, 1972 storm and runoff from highway sideslope at Parleys site No. 1	•	94
26.	Comparison of computed and measured hydrographs for October 4, 1972 storm at Parleys site No. 1 (sideslope)	•	96
27.	Measured July 19, 1973 storm and runoff from highway sideslope at Parleys site No. 1	•	97
28.	Comparison of computed and measured hydrographs for July 19, 1973 storm at Parleys site No. 1 (sideslope)	•	98
29.	Measured September 5, 1972 storm and runoff from combined roadway and sideslope at Layton site .	•	101
30.	Comparison of computed and measured hydrographs for September 5, 1972 storm at Layton site (combined roadway and sideslope)	•	102

LIST OF FIGURES (Continued)

Figure				Page
31.	Measured May 26, 1973 storm and runoff from combined roadway and sideslope at Layton site	•	•	103
32.	Comparison of computed and measured hydrographs for May 26, 1973 storm at Layton site (combined roadway and sideslope)	•	•	104
33.	Schematic diagrams of typical urban highway cross-sections	•	٠	106
34.	Computed dimensionless inlet hydrographs for runoff from roadway with curb-type gutter under stationary and moving rainstorms	•	•	110
35.	Schematic diagram of gutter flow with various locations of internal boundary	•	•	133
36.	Interrelationship between initial abstraction index, λ , runoff coefficient, c, and initial abstraction coefficient. f		•	140
37.	Flow chart of the computer program	•	•	155

viii

LIST OF TABLES

Table	¢.			Page
1.	List of input data for Los Angeles District Corps of Engineers (LADCE) airfield experimentations on a paved surface	1 •	• *	76
2.	Estimated initial abstraction (I _a) in inches for highway soil-cover-moisture complexes .	•	•	99
3.	List of the values of different parameters used in computer experiments	•	• >	108
4.	Normalizing quantities A_0 , V_0 , and L_0 and time duration of rainfall, t_d , used in the computation and construction of dimension- less hydrographs for all runs shown in Figure			111
		•	•	

LIST OF ABBREVIATIONS AND SYMBOLS

A	=	cross-sectional area of flow; highway drainage area; infiltra- tion model parameter
A _G	-	cross-sectional area of gutter flow
A _L	=	conjugate cross-sectional area of the discontinuity on region ''L''
Ao	Ħ	cross-sectional area of the reference flow
А _Р	a '	cross-sectional area of flow at point P
^A _R	=	conjugate cross-sectional area of the discontinuity on region $``_{\rm R}"$
A*	=	normalized cross-sectional area of flow
AMC	-	antecedent moisture condition
а	=	rainfall model parameter
В	=	total watershed area projected on the horizontal plane
b	=	rainfall model parameter
С	=	cross-sectional shape factor; a constant
с	=	concentration of raindrops; rainfall model parameter; runoff coefficient
c+	=	forward characterisitc
c_{L}^{+}	8	forward characteristic on region "L''
c_{R}^{+}	=	forward characteristic on region "R"
c [–]	2	backward characteristic
c_	=	backward characteristic on region ''L''
c_R	=	backward characteristic on region "R"
CN	=	runoff curve number
D	=	hydraulic depth of flow

x

D _o	=	hydraulic depth of the reference flow
D _P	=	hydraulic depth of flow at point P
D*	=	normalized hydraulic depth of flow
άA	=	change in cross-sectional area A
dds		change in length increment ds
$dM_{\rm L}$	=	momentum influx due to lateral inflow
dM_r	=	momentum influx from rainfall in s-direction
ds	= .	length increment in s-direction
dt	=	time interval
dV	=	change in velocity of flow V
e		superelevation of curved roadway
F	-	actual infiltration excluding the initial abstraction in inches
F	=	Froude number
\mathbf{F}_{f}	-	frictional force
Fg	÷	force due to the weight of water
F	=	reference Froude number
F P	=	total resultant pressure force
f	=	Darcy-Weisbach friction coefficient; side friction (cornering ratio) between tires and road surface; infiltration capacity; initial abstraction coefficient
f_{o}	=	Darcy-Weisbach friction coefficient for the reference flow
g	=	acceleration of gravity; infiltration coefficient
h	=	depth of flow
ĥ	=	depth of the centroid of the whole cross-sectional area of flow
h ch	22	channel depth
h_f	=	head loss due to friction
h _G	=	depth of gutter flow

xi

•

h gs	=	initial depth of gutter flow
$^{\rm h}$ L	=	conjugate depth of the discontinuity on region ''L''
ĥ_L	=	conjugate h of the discontinuity on region ''L''
h min	=	minimum depth below which the flow is assumed stationary
^ћ р	=	depth of flow at point P
h _R	=	conjugate depth of the discontinuity on region "R"
h _R	=	conjugate h of the discontinuity on region "R"
h rs	= .	initial depth of flow on the road surface
h h	=	overpressure head due to raindrop impact
h *	=	normalized depth of flow
ĥ ∗L	Ħ	normalized conjugate h of the discontinuity on region "L"
₽ ₩	=	normalized conjugate h of the discontinuity on region "R"
* h	-	normalized overpressure head
Ia	÷	initial abstraction in inches
i	=	infiltration rate of the ground surface
ī	=	average infiltration rate of the ground surface
i _*	= .	normalized infiltration rate of the ground surface
K	2	index or counter of a grid point
k.	=	roughness size of the ground surface texture
L _{ch}	=	gutter flow length
^L o	=	reference channel length
L rs	=	overland flow length
M t	-	momentum of the elementary volume of water at time t
N	22	index of a section of flow
NK	=	number of grid points on a flow section
NN	=	number of overland flow sections

. .

xii

- n = Manning's roughness coefficient; number of raindrops per unit horizontal area
- P = total storm rainfall in inches
- P_{ρ} = potential runoff or effective storm rainfall in inches
- Q = discharge passing through the cross-sectional area of channel flow; actual direct runoff in inches
- $Q_0 =$ reference discharge of flow
- Q_p = discharge of flow at point P
- Q₁₁ = discharge at upstream end
- Q_{*} = normalized discharge of flow
- q = discharge per unit width of overland flow
- q_{T} = lateral inflow rate per unit length of channel
- $q_{I,\star}$ = normalized lateral inflow rate
- q₁ = average lateral inflow rate
- q₁ = carry-over flow past the inlet between the curb and first slot
 of grate inlet
- q₂ = carry-over flow past outside the last slot of grate inlet
- R = hydraulic radius of flow
- R = Reynolds number
- $R_0 = hydraulic radius of reference flow$
- R₄ = normalized hydraulic radius of flow
- r = rainfall intensity in inches per hour
- r = average rainfall intensity in inches per hour
- r_{c} = radius of curvature for curved roadway
- r = reference rainfall intensity in inches per hour
- r* = normalized rainfall intensity

xiii

S	=	channel slope; soil potential infiltration in inches
s_{f}	=	friction slope
so	=	reference channel slope
s	=	distance coordinate along road surface profile
°sj.	=	location of the discontinuity at time t
s'j	=	location of the discontinuity at time $t + \Delta t$
s*	=	normalized distance along road surface profile
т	= ,	top width of flow
т _о	H	top width of reference flow
т _*	=	normalized top width of flow
T	=	average top width of flow
t	=	time
t _o	-	infiltration model parameter for time
t _p :	÷	time of ponding
ts	=	initial time
t _*	=	normalized time
U	=	design speed for highway
ū	=	average approaching velocity of road surface flow
u _*	=	normalized u
v	=	velocity of flow
v _L	=	conjugate velocity of the discontinuity on region ''L''
v _o		velocity of reference flow
Vo1	= n	volume of water flowing into Vol ₁ during Δt
Vol ₁	=	volume of water retained on the ground surface at time level 1
^{Vo1} 2	=	volume of water retained on the ground surface at time level 2
v _P	=	velocity of flow at point P

xiv

X

V _R	=	conjugate velocity of the discontinuity on region "R"
V s	==	initial velocity of flow
V _*	=	normalized velocity of flow
W	= .	velocity of the movement of rainstorm
W.	=	normalized velocity of the movement of rainstorm
w	=	width of the grate inlet
x	=	distance coordinate on the horizontal plane
×*	=	normalized x
У	=	depth of flow section perpendicular to the channel bed
z		distance coordinate in the vertical direction
α	=	energy correction factor for the velocity distribution of flow; infiltration model parameter
β	=	momentum correction factor for the velocity distribution of flow
β L	-	momentum correction factor for the velocity distribution of lateral inflow
γ	=	skewness of storm pattern or ratio of the time before the peak of rainstorm to the total time duration
ΔA	=	elemental drainage area for curved roadway
۵Ao	=	elemental drainage area for straight roadway
∆s _{rs}	=	distance interval between two grid points in overland flow
∆s _{GU}	=	distance interval between two grid points in channel flow
δ i	=	equivalent size of raindrops for i=1, 2,, n
θ		average angle of inclination; central angle subtended by an arc
θg	=	angle between curb and gutter
θο	=	reference angle of inclination
٨	=	mean terminal velocity of raindrops

.

.

.

۰.

· xv

Λ*	-	normalized mean terminal velocity of raindrops
λ	=	a constant multiplier; initial abstraction index
$\overline{\lambda}$	= .	statistical average value of initial abstraction index
ν	-	kinematic viscosity of fluid
۰. برج	=	velocity of the moving discontinuity
ξ*	22	normalized velocity of the moving discontinuity
ρ	=,	mass density of fluid
τ	= .	integration variable for time
τo	#	boundary shearing stress
Φ	=	angle of inclination that the mean terminal velocity of rain- drops makes with the vertical line
ψ	=	angle of inclination that overland flow makes with the line normal to the longitudinal direction of channel flow
ε	= '	a constant
ω	III.	specific weight of water

.

i .

.

· .

.

INTRODUCTION

Because of the difficulty in accurately predicting the inflow at the highway drainage inlet under a given design rainstorm pattern, urban storm drainage systems today are still largely designed on the basis of the empirical rational formula using rainfall intensity modified by a coefficient of runoff. Despite the efficiency in the engineering application of the rational method to the urban highway hydrologic design, the method permits only the calculation of peak discharge for a uniform rainfall of chosen intensity. Furthermore, the determination of values of the coefficient in the rational formula is very difficult because this coefficient must represent many variables including hydrometeorological and physiographical factors of an urban highway watershed under investigation. Therefore, a more accurate method based on a physically sound concept is needed.

Many attempts have been made by previous investigators to improve the rational method. For instance, Gregory and Arnold (1932) developed a modification of the rational formula to recognize such factors as watershed shape and slope, stream pattern, and the elements of channel flow. Bernard (1938) developed similar modifications more clearly representing the many variables of rumoff, with charts and nomographs to facilitate use of the more complex formulas. Application of these modifications, however, generally has been limited to areas larger than those encountered in most urban highway drainage projects.

Development of Urban Runoff Models

Among the first to consider applying hydrograph techniques to the design of storm sewers were Horner and Flynt (1936), who measured the temporal variation in rainfall and runoff on three very small (less than 5 acres) heavily urbanized areas in St. Louis, Mo., and Horner and Jens (1942), who applied modern hydrologic concepts to the determination of runoff from a single city residential block and suggested application of their techniques to larger areas. Hicks (1944) was the first to suggest the possibility of synthesizing urban runoff hydrographs. He developed a method of computing urban runoffs for the Los Angeles area based on experimental work for the determination of the principal abstractions from rainfall and actual gagings of local drainage areas in the metropolitan region. The Hicks methodology has been in use for more than 25 years in the city of Los Angeles and its satellite communities, but has not found wide use among designers in other cities. Extensive studies of a hydrograph method have been made by the city of Chicago. A detailed explanation of the hydrograph type of analysis used there is presented by Tholin and Keifer (1960), and of the synthetic storm pattern by Keifer

1

and Chu (1957). Both a summary of the method and a comparison of measured and computed runoffs are given by Jens and McPherson (1964).

An inlet method which is essentially the same as the hydrograph method was studied at the Johns Hopkins University (1955 to 1963; Viessman and Geyer, 1962; Schaake, Geyer, and Knapp, 1964; Schaake, 1965) and New Mexico State University (Viessman and Abdel-Razaq, 1964; Viessman, 1966 and 1968). Based on rainfall measurements and inlet and sewer gagings in urban areas at Baltimore, Md. (Knapp, Schaake, and Viessman, 1963), and other municipalities (McPherson, 1958), the inlet method determines the flow to each inlet; attenuates the peak flow from each subarea (group of inlets) as it moves down the storm drain; and sums the attenuated peaks to determine the total peak at the design point. The inlet method is summarized by Jens and McPherson (1964) and also by Kaltenbach (1963).

Another approach, the unit hydrograph method (Eagleson, 1962), depends on the correlation of characteristics of measured sewer outflow hydrographs from urban areas of varying types, to permit construction of synthetic unit hydrographs for areas under design. Outflow hydrographs developed by the unit hydrograph method have particular application to the sizing of impounding basins and drainage pumping stations, for which the rational method provides no sound basis for design.

In recent years there has been increasing research activity in the field of urban hydrology. Several mathematical models yielding various degrees of accuracy in the prediction of the runoff hydrograph have been developed by many investigators. A qualitative review of several of these models is given by Linsley (1971). Worth further investigation are some of such urban models developed by the British Road Research Laboratory (Watkins, 1962; Terstriep and Stall, 1969), the Environmental Protection Agency (EPA) (Metcalf and Eddy, Inc. et al., 1969 and 1971; Chen and Shubinski, 1971), and the University of Cincinnati (Papadakis and Preul, 1972; Preul and Papadakis, 1970 and 1972). Papadakis and Preul (1973) compared the computer results obtained from the University of Cincinnati (UC) model, EPA Storm Water Management (SWM) model, Chicago hydrograph method (Tholin and Keifer, 1960), and Road Research Laboratory (RRL) model. Heeps and Mein (1974) also applied the RRL model, SWM model, and UC model to several storms on two urban watersheds in Australia, but their results did not support the Papadakis and Preul's finding that the UC model performed better than the RRL model and SWM model. Singh (1973) suggested more exact and complex methods of process simulation than the preceding three models after making his criticism and comparison of model simulation procedures used in the three models. A brief description of the differences in the three simulation procedures before storm water enters the inlet will be helpful to the present study in which a more detailed and comprehensive mathematical model will be developed to simulate the rainfall-runoff process on an urban highway watershed.

The most unusual and controversial features of the RRL model are that the areas contributing to storm runoff are taken to be only the impervious areas directly connected to the sewer system, and that these impervious areas have a runoff coefficient of 100 percent. Overland flow on these contributing areas is simulated by combining the rainfall hyetograph and an assumed linear time versus contributing area diagram (time-area routing) for each inlet. The assumed constant time of entry at an inlet is the time required for all the directly connected impervious area tributary to the inlet to contribute to runoff. No allowance is made for surface storage.

Overland flow in the SWM model is simulated by storage routing using Manning's equation and the equation of continuity, assuming that the hydraulic radius is equal to the depth of flow. The depth of flow is assumed constant along the length of the overland flow plane during any given time interval. Depression storage is treated in such a way that overland flow does not begin until the depression storage is full. However, 25 percent (arbitrary) of the impervious area is assigned zero depression storage to simulate immediate runoff. Infiltration on the pervious areas is represented by Horton's equation and may be satisfied by the rainfall during a time step, the depth of detention storage from the previous time step, or the water in depression storage.

The UC model in general considers the same catchment processes as the SWM model, but differs in simulation techniques. The UC model accepts only catchments which are wholly pervious or wholly impervious. In other words, any subcatchment has to be represented by two equivalent subcatchments-one pervious, the other impervious. Overland flow is considered by an analytical method based on an empirical relationship between outflow depth, detention storage, and detention storage at equilibrium. This empirical relation, together with Manning's equation and the equation of continuity, provide a solution for overland flow. Depression storage is simulated by an exponential relationship which assumes that the rate of filling is proportional to the unfilled volume. Infiltration on the pervious subcatchments is simulated by subtracting Horton's infiltration capacity curve from the rainfall time distribution, the infiltration curve being time-offset if the initial rainfall intensity is less than the initial potential infiltration rate.

In another approach similar to the aforementioned, more-frequentlyreferred, three models, Offner (1973) divided the runoff surface into a grid of square coordinates with size appropriate to the degree of surface irregularity and then on each square element assigned four parameter values describing the mass balance of outflow and inflow to the element. Overland flow is simulated by using Izzard's equation (1944, 1946) in the case of laminar flow, and if his limit for laminar flow is exceeded, using the equation for turbulent flow (Horton, 1935).

Another type of urban runoff model proposed by Anderson (1970) and Chien and Saigal (1974) is also similar to the above three models, but in a much simplified (practical) fashion. Anderson (1970) assumed a triangular shape for a basic hydrograph so that the total hydrograph for a given location was obtained by adding together several triangular hydrographs. Chien and Saigal (1974) on the other hand proposed the linearized subhydrographs method in which runoff coefficient is used to compute the peak rates of runoff; linear variation of the rising limb and the receding limb of the subhydrograph for a small basin is assumed and superimposed; and kinematic wave time to equilibrium is used as a factor for the determination of subhydrographs.

There are equivalent simplifications (or complexities) in the simulation of gutter flow among the existing urban runoff models, but most of them were developed based on uniform flow storage routing using Manning's formula. Most sewer flow was also simulated in the same way as gutter flow through storage routing using the equation of continuity and Manning's equation. It is noted that a sound procedure to route storm water through a storm sewer by using a digital computer was already developed elsewhere (Yevjevich and Barnes, 1970; Pinkayan, 1972). Since in the present study only storm water before its entry to the drainage inlet is considered, further analysis of sewer flow is beyond the scope of the present study. The most comprehensive mathematical model including all physical processes of runoff is thus developed herein for routing storm water through the drainage inlet. Formulation of a new method to accurately simulate urban highway runoff will be useful to attack storm drainage and associated problems in urban highway areas.

Objectives and Scope of the Present Study

The main objective of this study is to develop, by using a flood routing technique, a general computer model which can predict runoff from an urban highway watershed under time- and space-varying rainstorms. The three specific objectives are: (1) to formulate a rigorous onedimensional surface flow model in the curvilinear orthogonal coordinate system, or a simiplified form thereof, which simulates the flow on the curved crown around a curved path on the straight or curved road surface; (2) to examine the validity and accuracy of the computer model using available existing data and field data collected from two typical urban highway watersheds in the Salt Lake City area; and (3) to study the effects of rainstorm and watershed parameters, such as the direction and magnitude of movement of the storm, the roughness, slope, curvature, length, and width of the roadway and shoulder, the gutter slope, infiltration characteristics of sideslope with various soils and plant covers, etc., on the inlet hydrograph.

Highways are built with crown or cross slopes to provide lateral or oblique drainage flow to the sides of the pavement, and in the case of curves, lateral or oblique flow due to superelevation of the pavement and shoulders. In urban areas, the recommended practice, if erosion is not a problem, is to allow the drain water to flow from the pavement, across the shoulder, and down the sideslopes to side ditches. However, in places of limited space, it is necessary to provide a curb along the outer edge of the pavement to conduct the flow to catch basins or other collecting devices, from which it is removed through a storm sewer system. In a broad sense, a highway watershed includes those areas within two adjacent highway drainage inlets (spaced from 400 to 1,000 ft) and the right-of-way (spaced from 200 to 400 ft) made from paved road surface (roadway), paved shoulder, sideslope or back slope (paved or grassed), median, gutter (paved or grassed), side ditch, and natural drainage area. To study the runoff process from such a small urban highway watershed requires a knowledge of flow lines and watershed divides, because within the right-of-way there are few such sub-watersheds on which storm water is routed independently of each other. For example, one of the highway sub-watersheds is made of a roadway and a curb-type gutter only. This sub-watershed is bounded by a fixed highway watershed divide which is a line connecting the vertices of the cross profiles of the roadway, two flow lines which pass two adjacent highway drainage inlets, and the curb.

Physically, runoff from a roadway under a moving or stationary rainstorm is a special case of the general watershed flow (Chen and Chow, 1968 and 1971). The runoff process on a roadway conceptually consists of two parts: (1) overland flow on the crown of the road surface; and (2) channel (or gutter) flow in the gutter. The water moving as overland flow meets with that in the gutter, most of which flows into the highway drainage inlet with part of it to be carried over. In the mathematical simulation of such flows, theoretically speaking, three-dimensional flow equations may be formulated (Chen and Chow, 1968 and 1971), but for simplicity overland flow and gutter flow each may be threated as the onedimensional flow in space with time taken as another independent variable.

A mathematical model which consists of a set of one-dimensional flow equations, initial conditions, and boundary conditions, can be formulated for combined overland flow and gutter flow. The one-dimensional, spatially varied unsteady flow equations, commonly used in open channel, can be developed for such flow and then solved numerically on a digital computer, subject to specified initial and boundary conditions.

One of the hardest boundary conditions to cope with is at the junction or interface between the downstream end of the overland flow and any point of the gutter flow. This interface between overland flow and gutter flow may be referred to as an "internal" boundary which may move with space and time. Conditions at this internal boundary (Chen and Chow, 1968 and 1971) must satisfy the flow variables of both types of flow at that point.

The boundary at the crown of the roadway is a fixed watershed divide where it may be assumed to have a zero flow velocity. The condition at the drainage inlet is an overfall condition which may or may not be utilized for solution, depending on whether the flow at the inlet is subcritical or supercritical. Both boundary conditions at the highway watershed divide and the drainage inlet may be referred to as ''external'' boundary conditions, in contrast with the movable internal boundary conditions prescribed at the interface between overland flow and gutter flow.

Different types of drainage inlets, such as grate inlets and curbopening inlets, with or without gutter depression, have been proposed to withdraw stormwater from the gutter. Because none of the existing inlets can function with 100 percent efficiency, part of the stormwater in the gutter which cannot enter an inlet will automatically become an input (i.e. carry-over) to the subsequent gutter flow at the upstream end of the gutter. The rate of carry-over flow depends on the approaching depth and velocity at the inlet as well as the type of the inlet installed. The inlet characteristic curves or relationships developed by Horner (1919), Tapley (1943), Larson (1948 and 1949), Izzard 9(1950), Li et al. (1951 and 1954), and Knapp et al. (1963) may be used as downstream boundary conditions at the inlet. However, none of these relationships developed has been proved to be satisfactory in application. Therefore, for simplicity, efficiency at the inlet will be assumed 100 percent and no carry-over flow will be imposed at the inlet.

The initial conditions on a dry surface of zero depth and velocity are of a singularity type requiring judicious assumptions of small depth and velocity in order to be able to start the computation numerically.

The flow equations (i.e., the Saint-Venant equations) will be expressed in the form of a set of quasi-linear partial differential equations. As will be reviewed in the following section, many numerical techniques have been developed to solve such a set of hyperbolic partial differential equations. Because the problem under study is only concerned with a relatively small basin area and a short-duration thunderstorm, use of an explicit finite-difference scheme with specified rectangular grid intervals based on the method of characteristics is believed to be more suitable than other methods in the numerical solution.

Although it has long been recognized that the flow equations for spatially varied unsteady flow in open channel can have discontinuous solutions (Dressler, 1949), a special technique by use of a pair of shock equations (i.e., rapidly varied flow equations) coupled with characteristic equations must be developed for tracing a bore or a train of such bores for which the method of characteristics fails to hold because characteristic in the same class cross each other. A useful application of this technique is in the computation of the wavefront which outraces the front of a moving rainstorm.

The advancing wavefront of the surface flow may outrace, or move at least with the same velocity, as the front of a rainstorm. In case the front of the flow outraces that of the rainstorm, the flow problem under study is similar to the dam-breaking problem (Stoker, 1957) and the method used in analyzing such a problem may be applied. However, a simplifying assumption must be introduced to overcome the singularity problem that is inherent at the leading edge of a wavefront moving on a dry surface. If the front of the flow advances with that of the rainstorm, the front of the flow may be assumed as a point in the continuous flow so that it can readily be computed by simply using the characteristic equations without resorting to the shock equations.

Following the review of literature on the flood routing techniques and associated numerical schemes, the mathematical model of surface runoff from an urban highway watershed under a moving or stationary rainstorm will be formulated and then solved on a digital computer. Computer solutions will be obtained for a variety of actual or design storms and drainage conditions commonly encountered on the urban highway. Significant dimensionless parameters which control the runoff process on the highway watershed will be identified and evaluated through sensitivity analysis. Comparison of computed inlet hydrographs with field data will also be performed for verification of the computer model.

Because of the difficulty in arranging what needed to be reported in one volume, some of the results will be presented without elaborating their detailed derivations and implications as far as no confusion and misunderstanding will arise. Those portions skipped from detailed analysis and presented in other volumes of the final report under separate subtitles are: Vol. 2. Laboratory studies of the resistance coefficient for sheet flows over natural turf surfaces; Vol. 3 Hydrologic data for two urban highway watersheds in the Salt Lake City area, Utah; Vol. 4. Synthetic storms for design of urban highway drainage facilities; Vol. 5. Soil-cover-moisture complex: Analysis of parametric infiltration models for sideslopes.

7

LITERATURE REVIEW OF RUNOFF MODELING AND

ROUTING TECHNIQUES

The surface runoff from a watershed due to a rainstorm varies with the hydrometeorologic characteristics of the rainstorm and physiographic properties of the watershed. In literature many studies deal with the effects of the physiographic properties of watersheds on the runoff hydrograph, but only few studies are concerned with the influences of the movement of rainstorms on rainfall-runoff relationship (Amorocho and Orlob, 1961; Maskimov, 1964; Marcus, 1968; Yen and Chow, 1968 and 1969; Hill, 1969; Wei and Larson, 1971). A study of the combined effects of such hydrometeorologic factors of moving rainstorms and physiographic factors on the runoff process is even more meager (Iwagaki and Takasao, 1956). It is the intrinsic complexity of flow phenomenon under such combined effects that has prevented us from analyzing it in a more fundamentally sound fashion. Nevertheless, advent of an electronic computer and its ability to implement existing numerical methods have stimulated great interest in seeking the solution of such a complicated problem.

Surface Runoff Models

The flow on a runoff surface under a moving rainstorm is not difficult to describe mathematically by using the concepts of fluid mechanics. Rigorously speaking, the mathematical model of the surface flow to be developed consists of a set of three-dimensional instantaneous unsteady flow equations (i.e., the three-dimensional instantaneous equations of continuity and motion-the Navier-Stokes equations-for unsteady free-surface flow) with adequately prescribed three-dimensional instantaneous initial and boundary conditions. However, to obtain a solution by using a modern high-speed electronic computer from such a three-dimensional instantaneous model, a numerical method, if it ever exists, could result in an extremely lengthy computer program that is likely to be either uneconomical or beyond the capacity of the computer presently available, or both. A three-dimensional model may be simplified to a two-dimensional plane-flow model, application of which however is limited to a laboratory watershed flow (Chow and Ben-Zvi, 1973). In practice, the best way to circumvent this difficulty is to treat the surface flow in a watershed as a combined system of "hydraulic" (or one-dimensional) flows (Chen and Chow, 1968 and 1971) which are hydrodynamically distinguishable from each other. For example, the water on the crown of the roadway moves as overland flow, while the water in the gutter moves as channel flow. Both can be treated as one-dimensional flows. A combination of overland flow and channel flow with internally coupling boundary conditions between them can adequately describe the shallow water movement on the roadway with curb. When one-dimensional flow is nonuniform and unsteady, as is

always the case in the runoff process, it may be called spatially varied unsteady flow.

Spatially varied unsteady flow consists of both gradually varied unsteady flow and rapidly varied unsteady flow. The equations of onedimensional gradually varied unsteady flow can be derived from the threedimensional flow equations by means of the time and space averaging process (Chen and Chow, 1968 and 1971; Strelkoff, 1969; and Yen, 1972 and 1973). The equations of one-dimensional rapidly varied unsteady flow, can be formulated from volume~integrated one-dimensional equations of continuity and momentum or energy (Stoker, 1957; Chen and Chow, 1968; Terzidis and Strelkoff, 1970; Yen, 1973). The relationships between dependent variables (i.e., the depth and velocity of flow) for gradually varied unsteady flow can be expressed in the form of a set of quasilinear partial differential equations while those for rapidly varied unsteady flow, if isolated, may be formulated in the form of algebraic relationships between conjugate depths and velocities at the point of discontinuity and propagation velocity of discontinuity. Both relationships are needed in the computation of surface flow on the roadway as well as in the gutter, specifically at the points of discontinuity, such as the places where overland flow meets gutter flow, moving hydraulic jumps and rolling waves occur, and the leading edge of the wavefront moves on the dry surface.

Numerical Techniques

Many techniques have been developed to solve numerically the gradually varied unsteady flow equations with appropriately prescribed initial and boundary conditions. Among those techniques reported (e.g., Richtmyer, 1962; Yevjevich, 1964; Dronkers, 1964 and 1969; Liggett and Woolhiser, 1967; Strelkoff, 1970; Gunaratnam and Perkins, 1970), the method of characteristics (Courant and Friedricks, 1948; Stoker, 1957; Courant and Hilbert, 1962; Garabedian, 1964), because of its advantages such as suitability, accuracy, and efficiency in computation over other methods (Liggett and Woolhiser, 1967), has been used widely for computing the propagation of floods, tides, wind waves, etc., in rivers and homogeneous estuaries and on beaches. Studies conducted by Isaacson, Stoker, and Troesch (1958), Whitham (1958), Freeman and Le Meháuté (1964), Lai (1965), Amorocho and Strelkoff (1965), Strelkoff and Amorocho (1965), Amien (1966), Fletcher and Hamilton (1967), Baltzer and Lai (1968), Liggett (1968), Chen and Chow (1968), Mozayeny and Song (1969), Ellis (1970), Wylie (1970), and Yevjevich and Barnes (1970), Pinkayan (1972), among many others are good examples of its application.

The major disadvantage of the characteristic model results from the necessity to store those computed for later interpolation and tedious computer programming to obtain the water surface and velocity profiles at a desired time level from the calculated coordinates and the corresponding depths and velocities of flow at such coordinates. This drawback, nevertheless, can be overcome by adoption of a rectangular grid network in the x, t-plane incorporated with the characteristic equations (Stoker, 1957; Amorocho and Strelkoff, 1965; Strelkoff and Amorocho, 1965) or both the characteristic curves and the characteristic equations (Lai, 1965; Streeter and Wylie, 1967; Baltzer and Lai, 1968; Chen and Chow, 1968; Wylie, 1970). The latter is an alternative technique which combines the accuracy of the method of characteristics with the convenience of a rectangular net.

Both explicit and implicit schemes can be used in the formulation of characteristic difference equations. However, there are some advantages in the computation by using an explicit scheme. For example, solving the characteristic difference equations formulated in an implicit scheme requires the simultaneous solution of a set of the nonlinear equations, but not for those equations in an explicit scheme. Even though expressed in an explicit scheme, the characteristic difference equations formulated at the point of intersection of the forward (C^{-}) and backward (C^{-}) characteristics originating from the known time level can be nonlinear in unknowns at that point. The simultaneous solutions of such a pair of nonlinear equations are difficult, but can be obtained by using an iterative procedure suggested by Liggett and Woolhiser (1967). If the forward and backward characteristic equations are linear in unknowns, such as formulated by Stoker (1957), Lai (1965), Amorocho and Strelkoff (1965), Strelkoff and Amorocho (1965), Streeter and Wylie (1967), Baltzer and Lai (1968), Chen and Chow (1968), and Wylie (1970), they can readily be solved for one grid point at a time. A computation procedure for solving such linear characteristic difference equations may be classified into the explicit scheme based on characteristic equations (Strelkoff, 1970).

Stoker's (1957) explicit scheme is only valid for flows at Froude numbers less than unity (i.e., subcritical flow), because the x-partial derivatives associated with the forward characteristic equation involve space increment to the upstream of the section in question while those associated with the backward characteristic equation involve the one to the downstream. The preceding expression of the x-partial derivatives associated with the backward characteristic equation is obviously invalid for supercritical flow, in which the backward characteristic curve lies to the upstream of the section in question instead. The explicit scheme based on characteristic equations can be made to be applied to both subcritical and supercritical flows if the orientation of the backward characteristic curve is also taken into account. The scheme used by Streeter and Wylie (1967), Chen and Chow (1968), and Wylie (1970) belongs to this category. The latter scheme is adopted in the present study.

Explicit schemes are stable only if the time interval used in the computation is sufficiently small. The criterion which sets the maximum size of this interval is referred to as the Courant criterion or condition

(Courant and Friedricks, 1948; Courant and Hilbert, 1962). For stability of explicit schemes, the Courant criterion must be satisfied; however, the explicit scheme would probably give the most accurate results if the time interval used is close to its limiting value (Strelkoff, 1970).

One of the most difficult computations of unsteady free-surface flow is the one with a moving hydraulic jump (i.e., sometimes called a shock, surge, or discontinuity), or a train thereof. Various techniques (see, e.g., Terzidis and Strelkoff, 1970) have been developed for computing gradually varied unsteady flow with a bore or a train of such bores. There are the method of characteristics (Faure and Nahas, 1961; Freeman and Le Meháuté, 1964; Chen and Chow, 1968), von Neumann-Richtmyer method (1950), Lax method (Lax, 1954; Keller, Levine, and Whitham, 1960), Lax-Wendroff method (1960), and Lax-Wendroff-Richtmyer method (Terzidis and Strelkoff, 1970). Of all, the method of characteristics combining a pair of the algebraic shock relationships with the characteristic difference equations along characteristic curves appears the most suitable to the explicit scheme based on the characteristic equations. All the methods listed above, with the exception of Chen and Chow (1968), seemingly assume that the initial state contain a bore and in their present forms of computation procedures are not capable of treating problems in which bores develop.

MATHEMATICAL FORMULATION OF SURFACE RUNOFF

The basic laws governing the movement of water on the runoff surface are the principles of conservation of mass and momentum. Based on these laws, the flow equations (i.e., the equations of continuity and momentum) can be formulated. In the derivation of the flow equations, the flow on the runoff surface is considered as a single stream-tube bounded by two stream surfaces: the free water surface and the ground surface. For convenience, the flow on the roadway may be divided into two regions: overland (or road surface) flow and channel (or gutter) flow. The outflow from the downstream end of the overland-flow part is considered as the lateral inflow to the channel flow. The location of the internal boundary between the overland flow and channel flow depends on the depths and velocities of both flows at the point of intersection which must satisfy the internal boundary conditions.

Although the roadway is usually constructed with a parabolic transverse profile, the formulation of the flow equations for overland flow and channel flow will be generalized so that the flow equations developed can be applied to both overland and channel flows. The coupling of channel flow to overland flow is accomplished by specifying internal boundary conditions along a line which separates the two types of flow.

In the formulation of the flow equations, raindrops falling on the road surface will be treated as a continuous medium of water. The flow equations will be derived first for nonprismatic channels and later simplified to those for prismatic channels.

Flow Equations

The equation of continuity

For one-dimensional free-surface flow with lateral inflow, the equation of continuity may be derived by considering an elementary control volume of water bounded by two cross-sections of average top width T which are an infinitesimal distance, ds, apart (Figure 1), the water surface, and the boundary of the channel. The water flowing out of minus the water flowing into the control volume in ds during infinitesimal time, dt, is $(\partial Q/\partial s)$ ds dt and this must equal the change in channel storage $(\partial A/\partial t)$ ds dt plus the volume due to rainfall and infiltration ($\mathbf{\tilde{r}} - \mathbf{\tilde{i}}$) T ds dt cos θ and due to lateral inflow \mathbf{q}_{T} ds dt. Hence, for incompressible fluid, the principle of conservation of mass requires that

Figure 1. Definition sketch for flow profile.

Figure 2. Plan view of internal boundary between overland flow and channel flow.

 $\frac{\partial Q}{\partial s} + \frac{\partial A}{\partial t} = (\bar{r} - \bar{i}) T \cos \theta + \bar{q}_{L} \qquad (2)$

in which A is the cross-sectional area of the channel normal to the direction of flow; \bar{r} and \bar{i} are the average rainfall intensity and infiltration rate, respectively, measured in the direction of gravity over the elementary volume in dt; θ is the average angle of inclination that channel bed makes with the horizontal plane; and \bar{q}_L is the rate of the lateral inflow from the downstream end of the overland flow to channel flow per unit length of channel flow. Equation 2 is the general continuity equation for one-dimensional free-surface flow with lateral inflows in a channel.

The equation of momentum

or

According to the principle of conservation of momentum, the total rate of momentum change in an elementary volume of water equals the net force acting on it. The forces acting on the elementary volume include the pressures on the two flow cross-sections, the weight of water, the friction and the forces due to raindrop impact. By assuming that the pressure distribution is hydrostatic, the total pressure on a flow cross-sectional area, A, is equal to ωA h $\cos^2\theta$, where ω is the specific weight of water, and h is the distance from water surface to the centroid of A measured in the direction of gravity. Considering all forces acting on the control volume in the direction of s axis, the total resultant pressure force, $F_{\rm p}$, is

$$F_{\rm p} = \frac{\partial \left(\omega A \bar{h} \cos^2 \theta\right)}{\partial s} \, ds \, \ldots \, \ldots \, (3)$$

The force due to the weight of water, F_{α} , is

The friction force, F_f , is

in which S_f is the friction slope. An additional pressure caused by the raindrop impact may be distributed uniformly over the flow cross-sectional area (Chen and Chow, 1968). This additional pressure may be

referred to as overpressure. The total overpressure can be expressed by $\omega A h^*$, where h^* is the overpressure head and is expressed by Chen and Chow (1968) as:

$$h^* = \frac{c}{g} r \Lambda \cos\theta \cos(\theta + \Phi) \qquad (6)$$

in which g is the acceleration of gravity, r is rainfall intensity, A is the mean terminal velocity of raindrops, and Φ is the angle of inclination that the mean terminal velocity of raindrops makes with the vertical line (Figure 1), and c is the concentration of raindrops and is defined as

$$\mathbf{c} = \frac{1}{\Delta B} \sum_{i=1}^{n} \frac{1}{4} \pi \delta_{\mathbf{i}}^{2} \qquad (7a)$$

The concentration of raindrops is the percent of the area for "n" number of raindrops of size, δ_i , for i=1, 2, ..., n, occupying a unit area, ΔB , in unit time, dt, assuming that no point within ΔB is hit by more than one raindrop during dt. Furthermore, if the average diameter of raindrops, δ , is assumed and the number of raindrops, n, is computed by dividing the total volume of raindrops occupying ΔB during dt (seconds), (r/60 x 60) ΔB dt, by the volume of a raindrop, $\pi \delta^3/6$, then Eq. 7a reduces to

which is expressed in terms of r, δ , and dt. Incorporating the over-pressure head with the total resultant pressure force, F_p , yields

$$F_{p} = \frac{\partial \left[\omega A \left(\bar{h} \cos^{2} \theta + h^{*}\right)\right]}{\partial s} ds \qquad (8)$$

The momentum, M_{t} , of the elementary volume of water at time, t, is

$$M_{t} = \rho AV ds \qquad (9)$$

where ρ is the mass density of water, and V is the velocity of flow. The momentum $M_{t + dt}$ at time (t + dt) is

$$M_{t+dt} = \rho (A + dA) (V + dV) (ds + dds) \qquad (10)$$

where dA is the change in area, A, in time interval, dt; dV is the change in velocity, V, in time interval, dt; and dds is the change in length, ds, in time interval, dt. Since

$$dA = \frac{\partial A}{\partial s}ds + \frac{\partial A}{\partial t}dt = (V \frac{\partial A}{\partial s} + \frac{\partial A}{\partial t})dt \qquad (11)$$

$$dV = \frac{\partial V}{\partial s} ds + \frac{\partial V}{\partial t} dt = (V \frac{\partial V}{\partial s} + \frac{\partial V}{\partial t}) dt \qquad (12)$$

$$dds = \frac{\partial V}{\partial s} ds dt \qquad (13)$$

in which ds/dt is taken as V. Substituting Eqs. 11, 12, and 13 into Eq. 10 and neglecting differentials of higher order gives

$$M_{t+dt} = \rho \left[AV + \left(A \frac{\partial V}{\partial t} + V \frac{\partial A}{\partial t} + V^{2} \frac{\partial A}{\partial s} + 2AV \frac{\partial V}{\partial s}\right) dt \right] ds$$

$$(14a)$$

or

$$M_{t+dt} = \rho \left[AV + \left\{ \frac{\partial (AV)}{\partial t} + \frac{\partial (AV^2)}{\partial s} \right\} dt \right] ds \qquad (14b)$$

During the time interval, dt, there is also a momentum influx, dM_r , from rainfall in the s-direction, which can be expressed as

$$dM_{r} = \rho \tilde{r} Tc \Lambda \sin (\theta + \Phi) ds \dots (15)$$

There is also a momentum influx, dM_L , due to lateral inflow, which has a velocity component in the s-direction equal to $\bar{u} \sin \psi$, where \bar{u} is the approaching average velocity of overland flow, and ψ is the angle between the direction of overland flow and that which is perpendicular to the channel flow, as shown in Figure 2. This momentum influx can be expressed as

Thus, applying the principle of conservation of momentum to the control volume by using Eqs. 4, 5, 8, 9, 14b, 15, and 16 and assuming that the momentum efflux due to infiltration is negligible yields

$$\frac{M_{t+dt} - M_{t}}{dt} - dM_{r} - dM_{L} = F_{g} - F_{f} - F_{f} + \dots$$
(17a)

or

$$\frac{\partial (AV)}{\partial t} + \frac{\partial (AV^2)}{\partial s} - \vec{r} TcA \sin (\theta + \Phi) - \vec{u} \vec{q}_L \sin \psi$$

$$= gA \sin \theta - gAS_f - g\frac{\partial}{\partial s} [A(\vec{h} \cos^2 \theta + h^*)] \qquad (17b)$$

The left-hand side of Eq. 17b represents the rate of the change in the momentum across the surface of the elementary volume. Since the velocity distribution of the channel flow and lateral inflow are not uniform, a momentum correction factor must be introduced to each of these two terms. Thus, Eq. 17b becomes

$$\frac{\partial (AV)}{\partial t} + \frac{\partial (\beta AV^2)}{\partial s} - \vec{r} Tc\Lambda \sin (\theta + \Phi) - \beta_L \vec{u}q_L \sin\psi$$
$$= gA \sin\theta - gAS_f - g\frac{\partial}{\partial s} [A(\vec{h} \cos^2\theta + h^*)] \qquad (17c)$$

in which β is the momentum correction factor for the velocity distribution of the channel flow, and has a theoretical value of 1.2 for laminar flow and 1 + 0.7812f for turbulent flow, where f is the friction coefficient [see Iwasa (1954) and also Appendix 1 for the derivation of the theoretical β value]; and β_L is the momentum correction factor for the velocity distribution of lateral inflow. Thus, Eq. 17c is the general form of the equation of momentum for channel flow.

From computer results obtained for several different rainstorm conditions, it was found that within the range of input data the effect of the β value on the outflow hydrograph was insignificant. Therefore, for simplicity the β value was assumed to be unity in the present study. Despite this assumption regarding the β value, the β and β_L will be retained in the following equation of motion, as expressed in Eq. 17c, throughout this investigation unless stated otherwise.

The general equations of continuity and motion, Eqs. 2 and 17c developed for channel flow can be applied to overland flow because overland flow is actually a wide open-channel flow, in which $\bar{\mathbf{q}}_{\mathrm{L}} = 0$ and flow variables such as Q and A must be expressed per unit width.

As far as the derivation of Eqs. 2 and 17c is concerned, no assumption regarding the cross-sectional shape, curvature, and alignment of the channel has been imposed. Both equations are applicable to flow in nonprismatic channels as well as on the cross profile of the roadway which in the case of concrete is a parabola with its vertex at the crown.

Evaluation of the friction slope

In one-dimensional flow, the friction slope S_f can be expressed by the Darcy-Weisbach formula,

in which f is the Darcy-Weisbach friction coefficient, and R is the hydraulic radius. To compute S_f by using Eq. 18 requires a knowledge of the value of f, which has yet to be determined for overland flow with shallow depth in the order of the roughness size. No theoretical formula has been developed for sheet flow except for the following special cases, which can be found elsewhere (e.g., Rouse, 1965; Chow, 1959):

For turbulent flow on the rough surface,

$$\frac{1}{\sqrt{f}} = 2 \log_{10} \frac{2R}{k} + 1.74 \qquad . \qquad . \qquad . \qquad . \qquad . \qquad . \qquad (19)$$

in which k is the roughness size of texture of the runoff surface.

For turbulent flow on the smooth surface,

$$\frac{1}{\sqrt{f}} = 2 \log_{10} \mathbb{R} \sqrt{f} + 0.404 \qquad . \qquad . \qquad . \qquad . \qquad . \qquad (20)$$

in which $\mathbf{R} = \mathbf{V}\mathbf{R}/\mathbf{v}$ is the Reynolds number.

For laminar flow,

in which C is a constant that depends on the cross-sectional shape of the channel (Chow, 1959) and in the case of sheet flow on the rainfall intensity and channel slope (Wenzel, 1970; Yoon, 1970; Yoon and Wenzel, 1971; Woo and Brater, 1961 and 1962). The value of C for sheet flows over natural turf surfaces was experimentally determined and reported in the laboratory phase of this study (Chen, 1975a).

For flow in the transition region, an empirical formula for the computation of f is available, but is not reliable enough to be used in this study because of the technical difficulty in adaptation to complete
description of f by Eqs. 19, 20, and 21. Equations 19, 20, and 21, as shown in Figure 3, are computed with the Reynolds number, **R**, as a controlling parameter for the selection of the equations and hence the determination of the f value.

Initial Conditions

If the ground surface is initially (t = 0) dry, then

in which h is the depth of flow. As h = 0, the cross-sectional area of flow, A, top width, T, hydraulic depth, D, and hydraulic radius, R, all become zero. The initial conditions specified by Eqs. 22 and 23 are singularity conditions, which would result in an immediate problem to obtain the solutions to the flow equations. Some judicious assumptions have to be made to overcome this singularity problem. Details of the assumptions will be discussed later.

Boundary Conditions

As mentioned previously, the boundary condition at the inlet changes as the flow changes from subcritical to supercritical and vice versa. The Froude number can be used to describe such changes in the state of flow. It will be shown later in this study that the Froude number, \mathbf{F} , under the effect of raindrop impact must be defined somewhat differently from a conventional way (Chow, 1959); that is, with the overpressure head, h^{*}, (Chen and Chow, 1968 and 1971)

$$\mathbf{F} = \frac{V}{\sqrt{g(D \cos\theta + h^*)/\beta}} \qquad (24)$$

This definition also includes the correction factors for channel slope, θ and momentum correction factor, β . If the Froude number defined in Eq. 24 is less than, equal to, or greater than unity, the flow is referred to as subcritical, critical, or supercritical.

The external and internal boundary conditions will be described separately as follows.

R, Reynolds number

Figure 3. Selection of friction coefficient, f.

External boundary conditions

Upstream boundary condition. The upstream boundary condition is

in which Q_u is the discharge at the upstream end. For overland flow, Q_u can be assumed equal to zero, whereas for gutter flow, it is equal to the carryover flow rate from the upstream adjacent gutter. If the inlet is assumed to be operated at 100 percent, Q_u is again set equal to zero.

Downstream boundary condition. The boundary condition at the inlet of a highway watershed is an overfall condition which depends on the flow characteristics. The flow before reaching the outlet can be either subcritical or supercritical. If it is subcritical, the overfall condition prescribed at the outlet is

$$\mathbf{F} = \frac{V}{\sqrt{g(D\cos\theta + h^*)/\beta}} = 1 \qquad (26)$$

which states that the outlet is the critical section where the Froude number is unity. No condition exists for supercritical flow.

Internal boundary conditions

The internal boundary conditions can be derived by using the continuity and momentum equations formulated around the peighborhood of a discontinuity in flow variables (Stoker, 1957). Let $\dot{\xi}$ be the propagation velocity of the discontinuity along the direction of flow. Then ignoring the length of the discontinuity the law of conservation of mass yields

$$A_{L}(V_{L} - \dot{\xi}) = A_{R}(V_{R} - \dot{\xi})$$
 (27a)

or

$$\dot{\xi} = \frac{A_L V_L - A_R V_R}{A_L - A_R} \qquad (27b)$$

in which A and V are the cross-sectional area and velocity of flow, respectively, with subscripts "L' and "R' referring to the left-hand (upstream) side and right-hand (downstream) side of the discontinuity, respectively. By taking into account the effect of the raindrop impact (Chen and Chow, 1968) and applying the law of conservation of momentum to the same neighborhood of the discontinuity and then incorporated with Eq. 27, the following expression for V_{T} is obtained:

$$\mathbf{V}_{\mathrm{L}} = \mathbf{V}_{\mathrm{R}} + |\mathbf{A}_{\mathrm{L}} - \mathbf{A}_{\mathrm{R}}| \left[\frac{g}{\mathbf{A}_{\mathrm{L}}\mathbf{A}_{\mathrm{R}}} \left(\frac{\mathbf{A}_{\mathrm{L}}\mathbf{b}_{\mathrm{L}} - \mathbf{A}_{\mathrm{R}}\mathbf{b}_{\mathrm{R}}}{\mathbf{A}_{\mathrm{L}} - \mathbf{A}_{\mathrm{R}}} \cos^{2}\theta + \mathbf{h}^{*} \right) \right]^{1/2}$$

(28)

in which h_L and h_R are the depths of the centroids of the crosssectional areas of flow, A_L and A_R , respectively. Note that in Eq. 28, the difference between A_L and A_R is expressed in absolute value so that the equation is applicable to both cases of $A_L < A_R$ and $A_L > A_R$. Equations 27 and 28 constitute the internal boundary conditions that must be satisfied at the moving hydraulic jump, the bore, the wavefront, and the intersection between overland flow and channel flow. There are five flow variables: ξ , V_L , V_R , A_L , and A_R in Eqs. 27 and 28. If three of them are known or solvable from other conditions or equations, the rest of the five variables can be obtained from Eqs. 27 and 28.

It is noted that A_L and A_R are the conjugate cross-sectional areas at a bore and the one on the front side of the bore is always smaller than that on the back side of the bore (Stoker, 1957). Two general cases of the dynamic behaviors of a bore result as a consequence of such definition regarding the front and back sides of the bore. Several inequalities among the five flow variables can be established for both cases (Chen and Chu, 1973), which are useful in the computation of the generation and propagation of the bore. Thus, from Eqs. 27 and 28 or alternative forms thereof, the following inequalities at the bore can be developed:

For
$$V_L > V_R > \dot{\xi}$$
 and $A_L < A_R$,
 $|V_L - \dot{\xi}| > \sqrt{g(D_L \cos\theta + h^*)/\beta}$ (29)
 $|V_R - \dot{\xi}| < \sqrt{g(D_R \cos\theta + h^*)/\beta}$ (30)

Equations 29 and 30 express mathematically the physical statement that the velocity of flow relative to the bore is supercritical on the front side (A_L) of the bore and subcritical on the back side (A_R) of the bore (Stoker, 1957). Furthermore, from Eqs. 29 and 30, it can be readily shown (Chen and Chu, 1973) that

$$V_{L} + \sqrt{g(D_{L} \cos\theta + h^{*})/\beta} > V_{L} - \sqrt{g(D_{L} \cos\theta + h^{*})/\beta}$$
$$> \xi > V_{R} - \sqrt{g(D_{R} \cos\theta + h^{*})/\beta} \qquad (31)$$

This inequality reveals that there are two characteristics, C_L^+ and C_L^- , on the front side and only one characteristic, C_R^- , on the back side of the bore meeting at the point of discontinuity.

whence

$$V_{L} + \sqrt{g(D_{L} \cos\theta + h^{*})/\beta} > \xi > V_{R} + \sqrt{g(D_{R} \cos\theta + h^{*})/\beta}$$
$$> V_{R} - \sqrt{g(D_{R} \cos\theta + h^{*})/\beta} \qquad (34)$$

In this case, obviously the front side of the bore is in a flow region associated with A_R and the back side associated with A_L . The inequality, Eq. 34, again holds the same property that the front side has two characteristics, C_R^+ and C_R^- , while the back side has only one characteristic, C_L^+ , meeting at the point of discontinuity.

The inequalities, Eqs. 29 through 34, can be used for the selection of three characteristic difference equations in the numerical computation of a bore. Details of computational procedures by using such inequalities, the corresponding characteristic difference equations, and the shock equations, Eqs. 27 and 28, especially for solving a moving wavefront due to a rainstorm on a dry bed, will be given later.

The mathematical model of runoff from a dry surface under a moving rainstorm thus consists of the flow equations, Eqs. 2 and 17c, the initial conditions, Eqs. 22 and 23, and the boundary conditions, Eqs. 25 through 28. Equations 2 and 17c form a set of quasi-linear partial differential equations, which cannot be solved analytically with the present knowledge in mathematics, except for a few special cases. It is imperative that the analytical model so formulated be transformed into a numerical form so that it can be solved by using a digital computer. As mentioned previously, an explicit scheme based on characteristic equations was adopted in this study to formulate the numerical model. For convenience in analysis and computation, the mathematical model will be first normalized so that the significant dimensionless parameters that control the runoff process from the runoff surface are also defined.

ł

NUMERICAL MODEL USING THE METHOD

OF CHARACTERISTICS

The flow equations, Eqs. 2 and 17c expressed in terms of A and Q (or V) are valid for nonprismatic channels as well as for flow with moving channel boundaries. However, if these flow equations are transformed into those expressed in terms of the flow depth, h, and Q (or V), a term representing departure of cross-sectional area from a prismatic channel (Liggett, 1968; Strelkoff, 1969; Wylie, 1970) in the flow equations complicates the numerical solution considerably. To solve the flow equations for moving channel boundaries is evidently more difficult than that for fixed boundary of nonprismatic channels because the spatial and temporal variations of cross-sectional area for flow with moving boundaries are unknown a priori. The flow on the roadway is very shallow in comparison with that in the gutter, thus a term representing the change in cross-sectional area of gutter flow due to the movement of the internal boundary is believed to be of small order of magnitude and thus ignored.

Let A = DT, where D is the hydraulic depth, and assume that dA = T dy, where y is the depth of flow section perpendicular to the channel bed, $y = h \cos \theta$, $d (A\bar{h}) = A dh$, $h^* = constant$ along the s-axis, and S = sin θ . Then Eqs. 2 and 17c can be transformed into the ones expressed in terms of h and Q (or V), as stated. For convenience, the flow equations so transformed are further normalized by using the following dimensionless quantities:

s = s	s/L ₀ ,	h _* =	h $\cos\theta_{0}/D_{0}$,	$V_{\star} = V/V_{o}$
t _* = t	V _o /L _o ,	D * =	D/D _o ,	$T_* = T/T_o$
r _* = 1	/r _o ,	i _* =	i/r _o ,	$q_{L*} = \bar{q}_L \cos\theta_o / V_o D_o$
$h_*^* = h$	$n^*/D_{o} \cos\theta_{o}$	R _* =	R/R _o ,	$\Lambda_* = \Lambda/V_{o}$
u, = u	1/V,			(35)

in which variables with asterisk subscripts are dimensionless quantities and those with "o" subscripts are reference quantities. Specifically, L_0 is defined as the reference length which may be either overland-flow length or channel-flow length, or a combination thereof. After several manipulations, Eq. 2 becomes

If Eq. 36 is multiplied by βV_{\star} and then subtracted from the normalized form of Eq. 17c, the normalized momentum equation in terms of h_{\star} and V_{\star} becomes

*

in which $\mathbf{F}_{0} = V_{0}/\sqrt{gD_{0}\cos\theta_{0}/\beta}$, may be referred to as the normal flow Froude number.

For brevity, the subscript asterisk used to denote the dimensionless nature of the variables will be dropped hereafter in dimensionless expressions unless otherwise specified.

The normalized equations of continuity and momentum, Eqs. 36 and 37, form a set of hyperbolic partial differential equations, which are in suitable form to be solved by the method of characteristics. Let Eqs. 36 and 37 be identified by M_1 and M_2 , respectively; or

$$M_{1} = \frac{\partial h}{\partial t} + V \frac{\partial h}{\partial s} + \frac{\cos \theta}{\cos \theta} D \frac{\partial V}{\partial s} - \frac{L_{o}}{D_{o} \cos \theta_{o}} \left[(r - i) \left(\frac{r_{o}}{V_{o}} \right) \cos^{2} \theta + \frac{\cos \theta}{\cos \theta} \left(\frac{D_{o}}{T_{o}} \right) \frac{q_{L}}{T} \right] \qquad (38)$$

$$M_{2} = (1 - \beta) \frac{\cos\theta}{\cos\theta_{o}} \frac{V}{D} \frac{\partial h}{\partial t} + \frac{\beta}{F_{o}^{2}} \frac{\cos\theta}{\cos\theta_{o}} \left(\frac{\cos\theta}{\cos\theta_{o}} + \frac{h^{*}}{D} \right) \frac{\partial h}{\partial s} + \frac{\partial V}{\partial t}$$

+ $\beta V \frac{\partial V}{\partial s} - \frac{L_{o}}{D_{o} \cos\theta_{o}} \left[\frac{\beta}{F_{o}^{2}} (S - S_{f}) + \frac{r}{D} \left(\frac{r_{o}}{V_{o}} \right) \left(c\Lambda \frac{\sin(\theta + \Phi)}{\cos\theta_{o}} \right)$
- $\beta V \frac{\cos\theta}{\cos\theta_{o}} \right) \cos^{2}\theta_{o} + \frac{\beta V i}{D} \left(\frac{r_{o}}{V_{o}} \right) \frac{\cos\theta}{\cos\theta_{o}} \cos^{2}\theta_{o}$
+ $(\beta_{L} u \sin\psi - \beta V) \frac{q_{L}}{DT} \left(\frac{D_{o}}{T_{o}} \right) \right] \cdot \cdots \cdot \cdots \cdot (39)$

Then Eqs. 38 and 39 can be combined linearly by using an unknown multiplier, $\lambda,$ to form

•

whence the following two ordinary differential equations in terms of $\boldsymbol{\lambda}$ are formulated:

$$\begin{bmatrix} \lambda + (1 - \beta) \frac{\cos\theta}{\cos\theta_{0}} \frac{V}{D} \end{bmatrix} \frac{dh}{dt} + \frac{dV}{dt} - \frac{L_{0}}{D_{0} \cos\theta_{0}} \begin{bmatrix} \frac{\beta}{F_{0}^{2}} (S - S_{f}) \\ + \frac{r}{D} \left(\frac{r_{0}}{V_{0}} \right) \left(\lambda D + c\Lambda \frac{\sin(\theta + \Phi)}{\cos\theta_{0}} - \beta V \frac{\cos\theta}{\cos\theta_{0}} \right) \cos^{2}\theta_{0} \\ + \frac{i}{D} \left(\frac{r_{0}}{V_{0}} \right) \left(- \lambda D + \beta V \frac{\cos\theta}{\cos\theta_{0}} \right) \cos^{2}\theta_{0} + \frac{q_{L}}{TD} \left(\frac{D_{0}}{T_{0}} \right) \left(\lambda \frac{\cos\theta}{\cos\theta} D \right) \\ + \beta_{L} u \sin\psi - \beta V \end{bmatrix} = 0 \qquad (41)$$

$$\frac{ds}{dt} = \frac{\lambda V + \frac{\beta}{F_{0}^{2}} \frac{\cos\theta}{\cos\theta_{0}} \left(\frac{\cos\theta}{\cos\theta_{0}} + \frac{h^{*}}{D} \right)}{\lambda + (1 - \beta) \frac{\cos\theta}{\cos\theta_{0}} \frac{V}{D}} = \lambda D \frac{\cos\theta}{\cos\theta} + \beta V$$

From Eq. 42, the following two particular values of λ are obtained.

$$\lambda = \pm \frac{1}{D} \frac{\cos\theta}{\cos\theta_{o}} \sqrt{\beta(\beta - 1) V^{2} + \frac{\beta}{F_{o}^{2}} (D \frac{\cos\theta}{\cos\theta_{o}} + h^{*})} .$$
 (43)

By substituting these two values of λ back into Eqs. 41 and 42, a set of ordinary differential equations is formulated as follows. From Eq. 42 with the help of Eq. 43, two sets of curves, C⁺ and C⁻ curves, which are often called characteristic curves, are obtained:

$$c^{+}: \frac{ds}{dt} = \beta V + \sqrt{\beta(\beta - 1) V^{2} + \frac{\beta}{F_{o}^{2}} (D \frac{\cos\theta}{\cos\theta} + h^{*})} \quad . \quad (44)$$

$$C^{-}: \frac{ds}{dt} = \beta V - \sqrt{\beta(\beta - 1) V^2 + \frac{\beta}{F_o^2} (D \frac{\cos\theta}{\cos\theta_o} + h^*)} \quad . \quad (45)$$

The characteristic differential equations which apply along these characteristic curves are obtained from Eq. 41 upon substitution of the λ expressions from Eq. 43.

$$\begin{aligned} c^{+}: \quad \frac{1}{D} \frac{\cos\theta}{\cos\theta_{o}} \cdot \left[(1 - \beta) \nabla + \sqrt{\beta(\beta - 1)} \nabla^{2} + \frac{\beta}{F_{o}^{2}} (D \frac{\cos\theta}{\cos\theta_{o}} + h^{*}) \right] \frac{dh}{dt} \\ + \frac{d\nabla}{dt} &= \frac{L_{o}}{D_{o} \cos\theta_{o}} \left[\frac{\beta}{F_{o}^{2}} (S - S_{f}) + \frac{r}{D} \left(\frac{r_{o}}{\nabla_{o}} \right) \left(c\Lambda \frac{\sin((\theta + \phi))}{\cos\theta} - \beta\nabla + \sqrt{\beta(\beta - 1)} \nabla^{2} + \frac{\beta}{F_{o}^{2}} (D \frac{\cos\theta}{\cos\theta_{o}} + h^{*}) \right) cos\theta \cos\theta_{o} \\ + \frac{1}{D} \left(\frac{r_{o}}{\nabla_{o}} \right) \left(\beta\nabla - \sqrt{\beta(\beta - 1)} \nabla^{2} + \frac{\beta}{F_{o}^{2}} (D \frac{\cos\theta}{\cos\theta_{o}} + h^{*}) \right) cos\theta \cos\theta_{o} \\ + \frac{q_{L}}{TD} \left(\frac{D_{o}}{T_{o}} \right) \left(\beta_{L} u \sin\psi - \beta\nabla + \sqrt{\beta(\beta - 1)} \nabla^{2} + \frac{\beta}{F_{o}^{2}} (D \frac{\cos\theta}{\cos\theta_{o}} + h^{*}) \right) cos\theta \cos\theta_{o} \\ + \frac{q_{L}}{TD} \left(\frac{D_{o}}{T_{o}} \right) \left(\beta_{L} u \sin\psi - \beta\nabla + \sqrt{\beta(\beta - 1)} \nabla^{2} + \frac{\beta}{F_{o}^{2}} (D \frac{\cos\theta}{\cos\theta_{o}} + h^{*}) \right) \right) \\ c^{-}: \quad \frac{1}{D} \frac{\cos\theta}{\cos\theta_{o}} \left[(1 - \beta) \nabla - \sqrt{\beta(\beta - 1)} \nabla^{2} + \frac{\beta}{F_{o}^{2}} (D \frac{\cos\theta}{\cos\theta_{o}} + h^{*}) \right] \frac{dh}{dt} \\ + \frac{dV}{dt} = \frac{L_{o}}{D_{o} \cos\theta_{o}} \left[\frac{\beta}{F_{o}^{2}} (S - S_{f}) + \frac{r}{D} \left(\frac{r_{o}}{\nabla_{o}} \right) \left(c\Lambda \frac{\sin(\theta + \phi)}{\cos\theta} - h^{*} \right) \right] \\ cos\theta \cos\theta_{o} \\ - \beta\nabla - \sqrt{\beta(\beta - 1)} \nabla^{2} + \frac{\beta}{F_{o}^{2}} (D \frac{\cos\theta}{\cos\theta_{o}} + h^{*}) \right) cos\theta \cos\theta_{o} \end{aligned}$$

$$+\frac{i}{D}\left(\frac{r_{o}}{V_{o}}\right)\left(\beta V + \sqrt{\beta(\beta - 1)} V^{2} + \frac{\beta}{F_{o}^{2}} \left(D \frac{\cos\theta}{\cos\theta_{o}} + h^{*}\right)\right) \cos\theta \cos\theta_{o}$$

$$+\frac{q_{L}}{TD}\left(\frac{D_{o}}{T_{o}}\right)\left(\beta_{L} u \sin\psi - \beta V - \sqrt{\beta(\beta - 1)} V^{2} + \frac{\beta}{F_{o}^{2}} \left(D \frac{\cos\theta}{\cos\theta_{o}} + h^{*}\right)\right)\right)$$
(47)

These ordinary differential equations so derived will be expressed in a difference form from which the depth and velocity of flow, h and V, can be solved orderly, one at a time, on the computer, at the intersection of the C^+ and C^- characteristic curves.

An Explicit Scheme with Specified Intervals

The derivatives in the equations of the characteristic curves, Eqs. 44 and 45, and the characteristic differential equations, Eqs. 46 and 47, will be replaced by first order differences for use in an explicit scheme with specified grid intervals, as shown in Figure 4. In the present study, the grid distance interval, Δs , is taken as a constant. In order to insure stability of the solution obtained from the explicit finite-difference equations, the relative value of the time interval, Δt , and grid distance interval, Δs , must satisfy the Courant criterion (Courant et al., 1952):

$$\Delta t < \frac{\Delta s}{\beta V + \sqrt{\beta(\beta - 1) V^2 + \frac{\beta}{F_0^2} (D \frac{\cos \theta}{\cos \theta} + h^*)}} \qquad (48)$$

The specified grid interval is used to assign definite values of s_p and t_p at point P in the s, t-plane (Figure 4) throughout the computation. Thus, only two unknowns, the velocity and depth of flow at point P, V_p and h_p , remain to be determined. If the velocity and depth of flow are known at points A, B, and C (Figure 4), the velocity and depth at points D and E (or E') can be evaluated by linear interpolation incorporating with the equations for the characteristic curves, C⁺ and C⁻.

The characteristic curves and the characteristic differential equations, Eqs. 44 through 47, can thus be transformed into the following explicit finite-difference forms with specified grid intervals. All the variables with subscripts, 'A,'' 'B,'' 'C,'' 'D,'' 'E,'' (or E'), and 'P'' used in the following equations denote the corresponding quantities at point A, B, C, D, E (or E'), and P in Figure 4, respectively.

For the C⁺ -characteristic curve, Eqs. 44 and 46 give

$$s_{p} - s_{D} = \left[\beta V_{D} + \sqrt{\beta(\beta - 1)} V_{D}^{2} + \frac{\beta}{F_{o}^{2}} \left(D_{D} \frac{\cos\theta}{\cos\theta} + h_{D}^{*}\right)\right] \Delta t$$
(49)

a. For subcritical flow

b. For supercritical flow

Figure 4. Explicit scheme with specified grid intervals.

$$\frac{1}{D_{D}} \frac{\cos\theta_{D}}{\cos\theta_{o}} \left[(1 - \beta) V_{D} + \sqrt{\beta(\beta - 1)} V_{D}^{2} + \frac{\beta}{F_{o}^{2}} (D_{D} \frac{\cos\theta_{D}}{\cos\theta_{o}} + h_{D}^{*}) \right] (h_{P} - h_{D})$$

$$+ (V_{P} - V_{D}) = \frac{L_{o}}{D_{o} \cos\theta_{o}} \left[\frac{\beta}{F_{o}^{2}} (S_{D} - S_{f}) + \frac{r_{D}}{D_{D}} \left(\frac{r_{o}}{V_{o}} \right) \left(cA_{D} \frac{\sin(\theta_{D} + \phi_{D})}{\cos\theta_{D}} \right) \right]$$

$$- \beta V_{D} + \sqrt{\beta(\beta - 1)} V_{D}^{2} + \frac{\beta}{F_{o}^{2}} (D_{D} \frac{\cos\theta_{D}}{\cos\theta_{o}} + h_{D}^{*}) \right] \cos\theta_{o} \cos\theta_{o}$$

$$+ \frac{i_{D}}{D_{D}} \left(\frac{r_{o}}{V_{o}} \right) \left(\beta V_{D} - \sqrt{\beta(\beta - 1)} V_{D}^{2} + \frac{\beta}{F_{o}^{2}} (D_{D} \frac{\cos\theta_{D}}{\cos\theta_{o}} + h_{D}^{*}) \right) \cos\theta_{D} \cos\theta_{o}$$

$$+ \frac{q_{LD}}{T_{D}D_{D}} \left(\frac{D_{o}}{T_{o}} \right) \left(\beta_{L} u \sin\psi - \beta V + \sqrt{\beta(\beta - 1)} V_{D}^{2} + \frac{\beta}{F_{o}^{2}} (D_{D} \frac{\cos\theta_{D}}{\cos\theta_{o}} + h_{D}^{*}) \right) dt$$

$$(50)$$

respectively.

For C⁻ - characteristic curve, Eqs. 45 and 47 give $s_{\rm P} - s_{\rm E} = \begin{bmatrix} \beta V_{\rm E} - \sqrt{\beta(\beta - 1)} \quad V_{\rm E}^{2} + \frac{\beta}{F_{\rm O}^{2}} \left(D_{\rm E} \frac{\cos\theta_{\rm E}}{\cos\theta_{\rm O}} + h_{\rm E}^{*} \right) \end{bmatrix} \Delta t$ $\frac{1}{D_{\rm E}} \frac{\cos\theta_{\rm E}}{\cos\theta_{\rm O}} \left[(1 - \beta) \quad V_{\rm E} - \sqrt{\beta(\beta - 1)} \quad V_{\rm E}^{2} + \frac{\beta}{F_{\rm O}^{2}} \left(D_{\rm E} \frac{\cos\theta_{\rm E}}{\cos\theta_{\rm O}} + h_{\rm E}^{*} \right) \right] (h_{\rm P} - h_{\rm E})$ $+ (V_{\rm P} - V_{\rm E}) = \frac{L_{\rm O}}{D_{\rm O} \cos\theta_{\rm O}} \left[\frac{\beta}{F_{\rm O}^{2}} \left(s_{\rm E} - s_{f} \right) + \frac{r_{\rm E}}{D_{\rm E}} \left(\frac{r_{\rm O}}{V_{\rm O}} \right) \left(c\Lambda_{\rm E} \frac{\sin(\theta_{\rm E} + \theta_{\rm E})}{\cos\theta_{\rm E}} \right) \right]$ $+ \beta V_{\rm E} - \sqrt{\beta(\beta - 1)} \quad V_{\rm E}^{2} + \frac{\beta}{F_{\rm O}^{2}} \left(D_{\rm E} \frac{\cos\theta_{\rm E}}{\cos\theta_{\rm O}} + h_{\rm E}^{*} \right) \right) \cos\theta_{\rm E} \cos\theta_{\rm O}$ $+ \frac{i_{\rm E}}{D_{\rm E}} \left(\frac{r_{\rm O}}{V_{\rm O}} \right) \left(\beta V_{\rm E} + \sqrt{\beta(\beta - 1)} \quad V_{\rm E}^{2} + \frac{\beta}{F_{\rm O}^{2}} \left(D_{\rm E} \frac{\cos\theta_{\rm E}}{\cos\theta_{\rm O}} + h_{\rm E}^{*} \right) \right) \cos\theta_{\rm E} \cos\theta_{\rm O}$

Equations 51 and 52 are developed only for subcritical flow, in which point E lies between points B and C (Figure 4a). In the case of supercritical flow, the C^{*} -characteristic curve has a positive slope in the s, t-plane so that point E lies between points A and B, as shown in Figure 4b. However, Eqs. 51 and 52 are still applicable to the supercritical flow case if subscript ''E'' for all variables in Eqs. 51 and 52 is changed to subscript ''E''.

In order to solve Eqs. 50 and 52 simultaneously for V_P and h_P , all other quantities at points D and E (or E') in the equations must be evaluated first. Within the same flow region, these quantities such as at points D and E (or E'), can be expressed in terms of known or calculated quantities at given grid points such as at points A, B, and C, by interpolation. In other words, for any given non-closed channel section, where the geometric elements of channel section, such as A, D, R, and T, can be defined entirely by the section geometry and the depth of flow, the velocity of flow and any geometric element of channel section anywhere between two grid points, if in the same flow region, can be evaluated by interpolation. For convenience, the hydraulic depth of flow, D, is used as a representative geometric element of the channel section under study.

When grid points A, B, and C utilized in the interpolation of the values of flow variables at points D and E (or E') are not in the same flow region, such as in the case of bores which develop between any two grid points, great care must be given to the formulation of linear interpolation or extrapolation formulas which, if derived for flow on the front side of the bore, should not be expressed in terms of the known values for flow on the back side of the bore and vice versa. It is essential that the interpolation or extrapolation formulas for flow variables at points D and E (or E') be generalized so that they can also be applied to a situation in which a bore exists in between grid points A, B, and C. The generalization of interpolation or extrapolation can be done in the following manner.

Let points 1 and 2 be given and sit in the upstream (left-hand) side and downstream (right-hand) side, respectively, of point D (Figure 5a), point E (Figure 5b), and point E' (Figure 5c). Points 1 and 2 may or may not be grid points A and B (Figures 5a and 5c), or B and C (Figure 5b), depending upon whether there is a bore or a train of such bores in between. If all the points 1, D, 2, and P are in the same flow region in the case of the C^+ characteristic curve, then

Figure 5. Location of characteristic curves.

$$\frac{s_2 \cdot s_D}{s_2 \cdot s_1} = \frac{s_2 \cdot s_P}{s_2 \cdot s_1} + \frac{\Delta t}{s_2 \cdot s_1} \left[\beta V_D + \sqrt{\beta (\beta - 1) V_D^2} + \frac{\beta}{F_0^2} \left(D_D \frac{\cos \theta_D}{\cos \theta_0} + h_D^* \right) \right]$$
(53)

in which s_1 and s_2 are the coordinates of points 1 and 2, respectively. With the C⁻-characteristic curve, two separate cases must be

examined. In the case of subcritical flow, $\beta V_{E} = \sqrt{\beta(\beta - 1)V_{E}^{2} + \frac{\beta}{F_{O}^{2}}(D_{E} \frac{\cos\theta_{E}}{\cos\theta_{O}} + h_{E}^{*})} < 0$

. (54a)

or simply

$$V_{E} < \frac{1}{F_{O}} \sqrt{D_{E} \frac{\cos\theta_{E}}{\cos\theta_{O}} + h_{E}^{*}} \qquad (54b)$$

point E falls between points B and C, as shown in Figure 5b. If points 1 and 2 are again introduced, then

$$\frac{\mathbf{s}_{2}^{-\mathbf{s}}\mathbf{E}}{\mathbf{s}_{2}^{-\mathbf{s}}\mathbf{1}} = \frac{\mathbf{s}_{2}^{-\mathbf{s}}\mathbf{P}}{\mathbf{s}_{2}^{-\mathbf{s}}\mathbf{1}} + \frac{\Delta \mathbf{t}}{\mathbf{s}_{2}^{-\mathbf{s}}\mathbf{1}} \left[\beta \mathbf{V}_{\mathbf{E}} - \sqrt{\beta(\beta-1)\mathbf{V}_{\mathbf{D}}^{2} + \frac{\beta}{\mathbf{F}_{\mathbf{0}}^{2}}\left(\mathbf{D}_{\mathbf{E}}\frac{\cos\theta_{\mathbf{E}}}{\cos\theta_{\mathbf{0}}} + \mathbf{h}_{\mathbf{E}}^{*}\right)}\right]$$
(55)

In the case of supercritical flow

$$\beta V_{E}, - \sqrt{\beta(\beta - 1)} V_{E}^{2}, + \frac{\beta}{F_{O}^{2}} (D_{E}, \frac{\cos \theta_{E}}{\cos \theta_{O}} + h_{E}^{*}) > 0$$
(56a)

or simply

$$V_{E'} > \frac{1}{F_{o}} \sqrt{D_{E'} \frac{\cos \theta_{E'}}{\cos \theta_{o}} + h_{E'}^{*}}, \qquad (56b)$$

point E' falls between points A and B, as shown in Figure 5c. If points 1 and 2 are again introduced, then

$$\frac{s_2 \cdot s_E}{s_2 \cdot s_1} = \frac{s_2 \cdot s_P}{s_2 \cdot s_1} + \frac{\Delta t}{s_2 \cdot s_1} \left[\beta V_{E'} - \sqrt{\beta(\beta - 1) V_{E'}^2 + \frac{\beta}{F_o^2} (D_{E'} \cdot \frac{\cos\theta_{E'}}{\cos\theta_o} + h_{E'}^*)} \right]$$
(57)

For convenience, Eqs. 53, 55, and 57 may be expressed in a general form such as

$$\frac{s_2 \cdot s_1}{s_2 \cdot s_1} = \frac{s_2 \cdot s_P}{s_2 \cdot s_1} + \frac{\Delta t}{s_2 \cdot s_1} \left[\beta V_1 + \pi_1 \sqrt{\beta(\beta - 1)} V_1^2 + \frac{\beta}{F_0^2} \left(D_1 \frac{\cos\theta_1}{\cos\theta_0} + h_1^* \right) \right]$$

$$(58)$$

in which the index ''i'' for variables s_i , V_i , D_i , θ_i , and h_i^* signifies the corresponding variables, at points D, E, and E'. It can readily be seen from Eqs. 53, 55, and 57 that for i = D, E, and E', $\pi_D = 1$, $\pi_E = -1$, and $\pi_E' = -1$, respectively. Use of Eq. 58 thus simplifies greatly the computer programming.

There are three unknowns, s_i , V_i , and D_i , in Eq. 58. To solve Eq. 58 for three unknowns two more equations are needed, i.e.,

$$\frac{s_2 - s_1}{s_2 - s_1} = \frac{V_2 - V_1}{V_2 - V_1} = \frac{D_2 - D_1}{D_2 - D_1} \qquad (59)$$

The Newton-Raphson Second Method (Moursund and Duris, 1967) can be applied to Eqs. 58 and 59 for simultaneous solution of three unknowns s_i , V_i , and D_i , which may be expressed in terms of supposedly known values at points 1 and 2.

After the interpolated quantities at points D and E (or E'), such as s_D and s_E (or $s_{E'}$), V_D and V_E (or $V_{E'}$), and D_D and D_E (or $D_{E'}$) are evaluated, the values of other geometric elements of the channel section at points D and E (or E') can be calculated from the geometry of the section and the values of D_D and D_E (or $D_{E'}$). Other variables such as rainfall intensities, r_D and r_E (or $r_{E'}$), the infiltration rates, i_D and i_E (or $i_{E'}$), the lateral inflow rates from the downstream ends of the overland flow parts, q_{LD} and q_{LE} (or $q_{LE'}$), the terminal velocities of raindrops Λ_D and Λ_E (or $\Lambda_{E'}$), and overpressure heads due to the raindrop impact, h_D^* and h_E^* (or $s_{E'}$), respectively. Substituting all known quantities at points D and E (or E') into Eqs. 50 and 52 and then solving Eqs. 50 and 52 are linear in V_P and h_P , the solutions are straightforward.

Mathematical expression of cross profile for roadway

The quadratic equation,

is the basic equation in formulating the cross profile of the roadway, as shown in Figure 6. Here z and x are the vertical and horizontal coordinates, respectively. From the coordinates of any three points on the road surface the coefficients of the equation, C_1 , C_2 , and C_3 can be determined. Furthermore, Eq. 60 can be used to express s-coordinate along the roadway profile with s = 0 corresponding to x = 0 and z = 0because the following relationship exists between x and s coordinates.

$$s = \int \sqrt{(dz/dx)^{2} + 1} dx = \int \sqrt{4C_{1}^{2}x^{2} + 4C_{1}C_{2}x + C_{2}^{2} + 1} dx$$

$$= \frac{2C_{1}x + C_{2}}{4C_{1}} \sqrt{4C_{1}^{2}x^{2} + 4C_{1}C_{2}x + C_{2}^{2} + 1}$$

$$+ \frac{1}{4\sqrt{C_{1}^{2}}} \log_{e} \left(8C_{1}^{2}x + 4C_{1}C_{2} + 4\sqrt{C_{1}^{2}} \sqrt{4C_{1}^{2}x^{2} + 4C_{1}C_{2}x + C_{2}^{2} + 1} \right)$$

$$- \frac{C_{2}}{4C_{1}} \sqrt{C_{2}^{2} + 1} - \frac{1}{4\sqrt{C_{1}^{2}}} \log_{e} \left(4C_{1}C_{2} + 4\sqrt{C_{1}^{2}} \sqrt{C_{2}^{2} + 1} \right)$$
(61)

Given the coordinate of s, the coordinate of x can be calculated from Eq. 61 and vice versa. The Newton-Raphson method may be used for numerical solution of Eq. 61 for x with s known. Note that the transformation of coordinate systems from s to x is needed because the characteristic difference equations, Eqs. 50 and 52, are solved on the s, t-plane, but not on the x, t-plane.

For solving Eqs. 50 and 52, the bed slope, S, that changes along the cross profile of the roadway must be evaluated at points D and E (or E') (Figures 4 and 5). The bed slope at any point on the roadway is

$$S = \sin\theta = \sin\left(\tan^{-1}\frac{dz}{dx}\right) \qquad (62a)$$

or

	a	b	с
Minimum	1 1/2''	2 1/4''	3''
(in. per ft.)	(1/8'')	(3/16'')	(1/4'')
Maximum	3''	4 1/2''	6''
(in. per ft.)	(1/4'')	(3/8'')	(1/2'')

Figure 6. Typical cross (or crown) slope of roadway.

Arrangement of overland flow and gutter flow sections

For delineating the entire flow region on the roadway between two adjacent drainage inlets, the flow lines that enter the inlets should be known. Unfortunately there is no such information associated with the hydraulic (one-dimensional) approach. Since a sheet flow has a small depth, a line starting at the inlet perpendicular to the contour lines is believed to be the closest to the actual flow line one can guess. Therefore, the entire flow region becomes a plane flow net consisting of contour lines and flow lines, as depicted in area HIJK of Figure 7.

Along a flow line of overland flow, say curve AB in Figure 7, the maximum bed gradient at any point, P, is tangent to curve AB, as shown by arrow PT in Figure 7, and is the vector summation of the bed gradient in the gutter direction, PC, and the bed gradient of the roadway crown, PR. Similarly the resultant velocity along AB can be considered as the vector summation of two velocity components: one along the crown of the roadway and the other in the direction of gutter flow. Both velocity components at the upstream end of overland flow must be zero (i.e., boundary conditions). In the true simulation of overland flow, the resultant velocity along the flow line should be considered. However, if flow lines, such as shown in area HIJK of Figure 7, are curvilinear, the computation should proceed along the curvilinear flow lines that are unfortunately very difficult, if not impossible, to be traced. Instead of tracing the flow line and having the resultant velocity computed along the flow line, one can simply compute the velocity component along the crown of the roadway, which is in the direction perpendicular to the gutter flow. This simplification in the computation is justified because the velocity component in parallel to gutter flow is equal for a line connecting the same crown slope and is equivalent to making the assumption that the true flow region HIJK is transformed into the conceptual rectangular flow region H'I'JK. Thus, only the velocity component along the cross profile of the roadway is routed.

The lateral inflow rate, q_I , per unit length of the gutter is actually equal to the overland-flow discharge per unit width along flow line AB at point B on the internal boundary multiplied by the cosine of the angle ψ that the direction of overland flow at point B makes with the line perpendicular to the gutter flow (Figure 2). This lateral inflow rate, q_L , is of the same magnitude as that calculated from overland flow along line A'B at the same point B on the internal boundary. Therefore, routing the overland flow in the conceptual area H'I'JK with

Figure 7. Contour lines and flow lines on the road surface.

the velocity component perpendicular to the channel flow is tantamount to routing it in the actual area HIJK with the resultant velocity along the flow line. The validity and practical applications of the present technique routing storm water over the conceptual rectangular area H'I'JK can only be examined by comparing the computed results with field data.

Given the conceptual rectangular watershed area, the routing arrangement of overland flow and channel flow can proceed as follows. As shown in Figure 8, let the value of N indicate the location of the given section associated with both overland flow and gutter flow, that of K the location of the given grid point, and that of T the time level. For example, N = 1 is the overland flow section 1 at the upstream end of gutter flow, N = NN is the overland flow section NN at the downstream end of gutter flow, and N = NN + 1 is the gutter flow itself. The grid points associated with K = 1 correspond to those at the upstream ends of both overland flow and gutter flow. The values of KN and NN represent the total numbers of grid points in the overland-flow and gutter-flow parts, respectively. Therefore, any given variable with a given grid point (N, K, T) will be specifically referred to that variable at the N-th section, K-th grid point, and T-th time level. Note that corresponding to each grid point of gutter flow, there is a section of overland flow. Consequently there are a total of "NN" number of overland flow sections. The number of the grid points, KN, in the overland-flow part changes with the location of the moving internal boundary between overland flow and channel flow with the last grid point, KN, being designated as the first one to the right of the internal boundary.

The distance interval between two grid points in the overland-flow part is denoted by Δs_{RS} , as shown in Figure 8, and that in the channel-flow part by Δs_{GU} . For convenience, the distance interval between grid points KN-1 and KN in the overland-flow part does not need to be limited to Δs_{RS} .

Elementary drainage area for curved roadway

To apply the same one-dimensional numerical model formulated in the previous section for runoff on the straight roadway to the case on the curved roadway requires only a slight modification on the elementary drainage area at each grid point. Note that for straight roadway, the elementary drainage area, ΔA_o (= $\Delta s_{RS} \propto \Delta s_{GU}$), as shown in Figure 8 is constant everywhere on the roadway, provided that the distance intervals, Δs_{RS} and Δs_{GU} , taken in both overland and gutter flow directions are invariant. However, this is not always the case on a curved roadway which is considered as a composition of several sections of different curvatures with straight longitudinal slopes. There are two alternative ways by which runoff on the curved roadway can be modeled. One is to keep ΔA_o constant by adjusting the Δs_{RS} and Δs_{GU} lengths and the other, vice versa. It seems more difficult to handle a problem with varying Δs_{RS} and Δs_{GU} in the curvilinear coordinate system (s_{RS} , s_{GU}) associated with the curved roadway than that with varying ΔA_o for specified Δs_{RS} and

Figure 8. The routing arrangement of overland flow and gutter flow.

 Δs_{GU} . Therefore, the latter method is used to find a correction factor for the variation in ΔA_0 with specified Δs_{RS} and Δs_{GU} on the curved roadway. The value of the correction factor so formulated should depend on the coordinates of a grid point in question and thus apply only to those quantities defined with reference to ΔA_0 such as the rainfall intensity, r, and the infiltration rate, i.

Consider an elementary drainage area, ΔA , (shaded) as shown in Figure 9, on the curved roadway. If the inner and outer radii of curvature for ΔA are assigned r_1 and r_2 , respectively, then

in which θ is the central angle in radians subtended by Δs_{GII} , or

$$\theta = \frac{\Delta s_{GU}}{r_c} \qquad (64)$$

in which r is the radius of curvature for the gutter flow length, $\rm L_{ch}.$ Geometrically on the average,

$$\mathbf{r}_{2} = \mathbf{r}_{c} + \mathbf{L}_{rs} - \mathbf{s} + \frac{\Delta \mathbf{s}_{RS}}{2} \qquad (65)$$

in which L_{rs} is the overland flow length and s is the overland-flow coordinate of the center of ΔA . Substituting Eqs. 64, 65, and 66 into Eq. 63 yields

$$\Delta A = \Delta A_{0} \left(1 + \frac{L_{rs} - s}{r_{c}} \right) \qquad (67)$$

or

$$\left(1 + \frac{L_{rs} - s}{r_c}\right) = \frac{\Delta A}{\Delta A_o} \qquad (68)$$

The ratio of the elementary drainage areas, ΔA on the curved roadway to ΔA_0 on the straight roadway is indeed a correction factor, Eq. 68, which will be used to multiply all the terms containing r and i in Eqs. 50 and 52. The correction factor becomes unity as an overlandflow grid point approaches to the gutter (s = L_{rs}). Furthermore, no

Figure 9. An elementary drainage area of the curved roadway.

contradiction seems to be induced by multiplying the correction factor to the r and i terms even in the case of the straight roadway, for the correction factor automatically becomes unity as r_c approaches to infinity. In application, however, the r_c value in Eq. 68 needs to be determined in advance.

The minimum permissible radius of curvature, r_c , in ft is determined by the highway design speed, U, in mph, and the maximum superelevation, e, in ft per ft of roadway width of the curved roadway as follows (Highway Research Board, 1957; Noble 1960):

in which f is the side friction (cornering ratio) between tires and road surface. American Association of State Highway Officials (AASHO, 1973) has specified that (1) maximum superelevation rates of 0.04 to 0.06 are commonly used on arterial streets, (2) on freeways maximum superelevation rates of 0.06 to 0.08 usually apply, and (3) maximum superelevation rates of 0.10 to 0.12 are applicable for those highways if snow and ice are not factors. Highway curve design data for assumed maximum superelevations of 0.04, 0.06, 0.08, 0.10, and 0.12 can be found in AASHO (1973, 1965). A friction of f = 0.10 is a conservative value to be used for main-line highway design (Moyer, 1934).

Reference (or normalizing) quantities

The angle of inclination of the gutter bottom is taken as the reference angle of inclination, θ_0 . Therefore the reference slope, S_0 , is the gutter slope, defined as $\sin\theta_0$. The reference length, L_0 , can be either the length of gutter flow or that of overland flow, or a combination thereof. The discharge at the downstream end of gutter flow at the equilibrium stage is considered as the reference discharge, Q_0 , corresponding to the reference rainfall intensity, r_0 . That is

in which B is the total projected area of the runoff surface on the horizontal plane, A_0 is the reference cross-sectional area of flow, and V_0 is the reference velocity of flow. The value of A_0 cannot be determined unless V_0 is known and vice versa. Thus, both quantities can only be calculated by a trial and error as follows. Assuming that water with the reference discharge Q_0 flows uniformly in the gutter with the reference slope S_0 , one obtains from Eq. 18

in which f_0 is the reference friction coefficient and R_0 is the reference hydraulic radius. Combination of Eqs. 70 and 71 yields

$$Q_{o} = \sqrt{\frac{8g}{f_{o}}} A_{o} \sqrt{\frac{R_{o}S_{o}}{R_{o}S_{o}}} \qquad (72)$$

Equation 72 can be solved for the reference hydraulic depth, D_0 , because A_0 and R_0 are all functions of D_0 and the value of f_0 can be calculated by using Eq. 19, 20, or 21. For simplicity, the reference gutter flow with Q_0 is conceptually treated as 1-ft rectangular channel flow in the present analysis. Therefore, the reference top width, T_0 , simply becomes unity and $A_0 = R_0 = D_0$. Solution of Eq. 72 needs an iteration method such as used by Chen and Chow (1968). After D_0 is determined, the corresponding value of A_0 , and hence V_0 , can be obtained from the geometric relationship of the 1-ft rectangular channel and Eq. 70, respectively.

The reference Froude number is defined as

$$\mathbf{F}_{0} = \frac{\sqrt{0}}{\sqrt{gD_{0} \cos\theta_{0}/\beta}} \qquad (73)$$

Assuming initial conditions

Immediate difficulty arises when the initial conditions, Eqs. 22 and 23, in the form of difference scheme are used to start the computation. If the velocity and depth of flow are all zero everywhere at the initial stage, the method of characteristics using an explicit scheme with specified grid intervals fails immediately at the subsequent time level. Therefore, it appears necessary for each problem to assume an appropriate initial condition.

In the case of stationary uniform rainfall (i.e., equivalent to have an infinite storm velocity), assume that the initial depth of flow on the roadway, h_{rs} , is small, say one fifth of the flow depth at the second grid point on the roadway at the equilibrium stage or the roughness size, k, of the ground surface, whichever is smaller. The corresponding time for this condition is

When the top width of gutter flow becomes zero, an immediate failure of computation by use of Eqs. 50 and 52 will result unless an initial depth higher than h_{rs} is assumed in the gutter. Let us assume the depth of gutter flow, h_{gs} , to be

 $h_{gs} = 2h_{rs}$

Then the non-zero top width of gutter flow can be obtained accordingly at the initial state.

The initial velocity of flow, V_s , at any point on a roadway assumed to be that of the uniform flow with the corresponding bed slope, S, roughness size, k, and flow depth, h_{rs} or h_{gs} , at the point under consideration. Because the bed slope of the roadway steepens as it approaches the point where overland flow meets with gutter flow (i.e., the internal boundary), the initial velocity of flow so computed increases considerably with the cross profile of the roadway.

For moving rainstorms, the initial conditions must be set up differently from that of stationary rainstorms, as described above. The storm front may move in any direction with a storm velocity, W, which may differ considerably, depending upon physiographical and hydrometeorological factors. It is possible that the storm moves so slowly that the wavefront produced on the dry bed outraces the storm front. Although the assumed initial conditions, if generalized, can be applied to a storm moving in any direction, only those related to storms moving in the same direction as those of overland flow and gutter flow, or in the opposite direction, are treated herein. When the roadway is initially dry and a storm just enters the upstream end (i.e., highway watershed divide), the amount of water coming from rainfall and then staying on the ground around the upstream end is too little to be utilized as a starting condition of the subsequent computation. Furthermore, there is no way to know beforehand how this little amount of water behaves around the upstream end of the ground surface. In fact, it is part of the solution being sought. In order for the present method to be valid in this case, it appears that the assumption of a non-zero depth of water extending over at least the two uppermost grid points is necessary for the numerical computation to start with. An alternative way to circumvent this starting problem is to subdivide the distance interval between the two uppermost grid points into finer distance intervals and then the same assumption of a non-zero depth of water applied to the uppermost, finer distance interval. Results obtained from the latter approach are believed to be more accurate than those obtained from the former approach; however, in view of a considerable increase in the computer time with the latter approach, the uppermost distance interval is not subdivided herein.

The initial location of the stormfront, say at the second grid point (i.e., K = 2 in Figure 8) from the upstream end, will be assumed and the corresponding time for the stormfront to reach that point will be computed. Similarly the initial location of the wavefront, say halfway between the second and the third grid points, will also be assumed and the corresponding depth and velocity of flow will be computed on the

assumption that they are uniform throughout the wavefront and the volume of water retained on the ground surface is equal to that of rainwater falling on the ground surface during that period of the initial time. Hopefully, the depth and velocity of flow so assumed at the upstream end (i.e., K = 1 in Figure 8), at the second grid point, and at the wavefront will adjust themselves in the computations at subsequent time levels. As shown by Chu (1973), if the location of the wavefront assumed is too far downstream, the wavefront will move slightly upstream to make automatic adjustments of its location in the subsequent computations. These are the initial conditions assumed for a storm moving in the direction of overland flow.

The number of initial conditions to be assumed for a storm moving in the direction of gutter flow is more than that in the direction of overland flow. As soon as a storm enters the roadway in the direction of gutter flow, immediately a combined overland and gutter flow occurs at the upstream end of the gutter. Both locations of the stormfront and the wavefront of gutter flow can be assumed as those for a storm moving in the direction of overland flow, but the depth and velocity of flow in the overland-flow part at different sections of gutter flow for the initial time period must be computed accordingly. It appears that the initial depth of flow which is assumed uniform throughout the wavefront in the gutter needs to be assumed larger than that at the internal boundary, preferably three times greater, in order to proceed smoothly in subsequent computations.

When a storm is moving in the opposite direction to the flow, either overland flow or gutter flow, (i.e., from the downstream end to the upstream end), no advancing wavefront exists and the initial conditions can be assumed as those for a stationary rainstorm extending over a certain distance interval from the downstream end to the assumed stormfront.

Evaluation of the friction coefficient

Equation 19, 20, or 21, as depicted in Figure 3, is used to evaluate the friction coefficient, f. However, if the depth of flow, h, or hydraulic radius, R, is very small with almost the same order of magnitude as the roughness size, k, an unrealistically large value of the friction coefficient, f, may result from Eq. 19, 20, or 21. To improve this poor evaluation of f, Chen and Chow (1968) proposed the friction slope, S_f , at the initial stage to be evaluated from the energy equation formulated at each grid point. As shown in Figure 10, the head loss, h_f due to friction between points D and E (or E') is assumed equal to $S_f \Delta s_{DE}$ (or $S_f \Delta s_{DE'}$), in which Δs_{DE} and $\Delta s_{DE'}$ are the channel distances between points D and E and between points D and E', respectively. Thus

or

 $S_{f} = S_{DE}, + \frac{h_{D}h_{E}}{\Delta S_{DE}} + \frac{\alpha_{D}\frac{V_{D}^{2}}{2g} - \alpha_{E}}{\Delta S_{DE}} + \frac{\alpha_{D}\frac{V_{D}}{2g} - \alpha_{E}}{\Delta S_{DE}}$ (76b)

in which α_D and α_E (or α_E) are the energy correction factors at points D and E (or E'), respectively. The theoretical evaluation of the energy correction factor for laminar and turbulent flow is appended to this report (Appendix 1).

A few preliminary computer experiments revealed that use of Eq. 76a or 76b alone resulted in the erroneous longitudinal velocity distribution which changes only slightly, if not at all, with time. In view of this problem, it appears that Eq. 76 can only be used whenever Eq. 19, 20, or 21 fails to compute the realistic f value. In effect Eq. 76 plays only a role of transition in the evaluation of the friction slope, ${\rm S}_f$, or friction coefficient, f. Chen and Chow (1968) compared the value of ${\rm S}_f$ computed from Eq. 18 with that from Eq. 76 and selected the smaller one. However, if Eq. 76 simply plays a role of transition in the evaluation of S_f from one value to another computed by using Eq. 19, 20, or 21, both equations should give about the same computed value of S_f or f at the equilibrium state where the depth of flow is much higher, possibly many times higher, than the roughness size. For most cases of the problems investigated, use of Eq. 76 happened both at the initial stage of the computation and at the final stage of receding flow after rain stops. Because the initial conditions formulated at the beginning of the computation are nothing but assumptions, as already described before, the f value estimated by use of Eq. 19, 20, or 21 at the beginning stage of the computation was so unrealistic that the depth and velocity computed at each grid point by means of Eqs. 50 and 52 easily became too low or too high. If this undesirable situation had developed, the computation at next time level could have immediately broken down unless some kind of bypassing alternatives were built into the computer program. Use of Eq. 76 might be regarded as one of such alternatives. There were some other instances, in which Chen and Chow's (1968) scheme might also fail when the S value determined from Eq. 76 is always smaller than that obtained from Eq. 18, even at the equilibrium state. This in a sense implies another undesirable situation in which Eq. 76 has been used alone all the time in the evaluation of the S_{f} . A

few exploratory computer experiments indicated that in some cases, especially for extensively long overland flow consisting of combined regimes of flow resistance such as partially laminar upstream and partially turbulent downstream, the flow would probably never reach the equilibrium state if only Eq. 76 was used in the computation. A compromise between the use of Eq. 18 and that of Eq. 76 must thus be in order. The role of transition played by Eq. 76 suggests that taking the average value of S_f or f computed by both equations at each time level may be a good approximation for practical purposes (Chu, 1973).

Although there are few more technical difficulties in the computation than just described above in connection with the present numerical scheme, similar alternatives were used to overcome such difficulties, wherever they occurred. In some problems, for example, with low rainfall intensity and steep slope, the depth of flow throughout the channel remains very small with an order of magnitude of the roughness size, k, or less even at the equilibrium state. In this case, additional judicious assumptions have to be made because the evaluation of S_f or f by using the method, as described above, still produces unrealistic values. Physically, when the depth of flow becomes smaller than the roughness size, the water movement around protruded roughness particles on the ground surface must be slow, in a way analogous to porous media flow regardless of whether or not raindrops are impinging on the water surface. Therefore, one may assume that there exists a minimum depth below which the flow is so slow (i.e., laminar) that the laminar flow equation (i.e., a combination of Eqs. 18 and 21) applies. The minimum depth may change with channel slope and rainfall intensity, but for simplicity it is assumed constant herein. An analysis of Woo and Brater's (1961) data reveals that the minimum depth approaches asymptotically twice the roughness size with the increase in the bed slope within their slope range tested. The value of fcorresponding to the minimum depth is computed from Eq. 19 for R/k = 2to be about 0.115, as indicated in Figure 3, and the value of C in Eq. 21 may be evaluated as follows.

Let the value of C depend on the bed slope, S, the rainfall intensity, r, and the roughness size, k. Then for uniform laminar flow with depth less than the minimum depth, say εk , where ε is assumed constant [i.e., $\varepsilon = 2$ in Chu's (1973) study], the Darcy-Weisbach equation, Eq. 18, is expressed as

which upon combination with Eq. 21 reduces to

$$S = \frac{CvV}{8gR^2} \qquad (78)$$

However, when the depth of flow increases and the hydraulic radius exceeds εk , the flow under study can become either laminar or turbulent. Consequently, one may assume that at $R = \varepsilon k$, both Eqs. 19 and 21 satisfy Eq. 77 as follows:

$$S = \frac{CvV}{8g(\varepsilon k)^2} \qquad (79)$$

$$S = \frac{1}{8g[2log(2\epsilon) + 1.74]^2} \frac{v^2}{\epsilon k} (80)$$

Eliminating V from Eqs. 79 and 80 yields

$$C = \frac{[8gS(\epsilon k)^3]}{\nu[2\log(2\epsilon) + 1.74]}$$
 (81)

This is the formula for C, the value of which is assumed to be greater than the theoretical 24 and varies with S and k, as shown in Figure 11 for $\varepsilon = 2$. Equation 81 for $\varepsilon = 2$ and k = 0.00333 ft is also plotted in Figure 11 and compared with Woo and Brater's (1961) result. It is not surprising to see that they deviate significantly from each other, for the value of ε in Woo and Brater's data varies from 4 for small S to 2 for large S. No way of improving the expression of Eq. 81 was discovered unless one knows the variation of ε with S and k a priori. Despite the difficulty in the analytical expression of the C value, Eq. 81 was used in Chu's (1973) study as a first-order approximation. Apparently there is a question regarding the general applicability of Eq. 81 which merits a few comments in the following.

To make use of Eq. 81 for assumed $\varepsilon = 2$, one has to know the roughness height, k, for a surface under investigation. However, the k value for a given surface is the hardest to determine. Usually most kinds of material determined from experiments have a wide range of the k value. For example, the k value for concrete varies from 0.0015 to 0.0100 ft (Chow, 1959). Because the k value for a glued-sand surface used in Woo and Brater's (1961) experiments lies within the range of concrete, the C values determined from their experimental data may be used as a basis for the computation of sheet flows over concrete or bituminous surfaces without further determining the k value. This approach seems to be more acceptable than use of Eq. 81 in the engineering practice, for a highway engineer does not need to measure or determine the roughness height for concrete or other kinds of material.

In general, the following relationship exits between the C value and bed slope, S, for a given surface (Chen, 1975a):

Figure 11. Relationship between C value, S, and k.

in which a and b are parameters, the values of which seem to vary with k and r, the rainfall intensity, if it is under rain. A further analysis of Woo and Brater's (1961) experimental data resulted in approximately a = 235 and b = 0.296 for a glued-sand surface which will be assumed to have the same roughness height as a concrete or bituminous surface in the present study. For use in the computation of overland flow on the side-slope, Chen (1975a) has experimentally determined a = 510,000 and b = 0.662 for natural turf surfaces. Thus, Eq. 82 assigned with the preceding values of a and b for concrete and turf surfaces is used throughout this runoff modeling study.

Given the expression of C, the velocity V in the shallow laminar flow range can now be expressed by substituting Eq. 82 into Eq. 78 as

which shows an interesting result because the values of the exponent, (1 - b), of S in Eq. 83, 0.704 for concrete and 0.338 for turf, are less than theoretical unity. In the present study, the laminar flow using Eq. 83 is assumed for R < ε k, in which the value of ε may be determined by best fitting the computed hydrographs to the measured ones obtained from field data.

Numerical formulation of external and internal boundary conditions

 $C = aS^b$

Upstream boundary conditions. Equation 2 in dimensionless form using normalized variables such as defined in Eq. 35 is

$$\frac{\partial Q}{\partial s} + \frac{\partial A}{\partial t} = \frac{L_o T_o r_o}{A_o V_o} \quad (\bar{r} - \bar{i}) \quad \bar{T} \quad \overline{\cos\theta} \quad + \frac{L_o}{T_o \cos\theta_o} \quad \bar{q}_L \quad . \quad (84)$$

in which asterisk subscript used to represent normalization was already dropped from all the variables for brevity and $\cos\theta$ is the average value of $\cos\theta$ between two grid points under consideration. Consider two uppermost grid points as shown in Figure 12a. The partial derivatives in Eq. 84 can be expressed by the following finite-differences

- 54
$$\frac{\partial A}{\partial t} = \frac{1}{2} \left(\frac{A_{\rm P} - A_{\rm U1}}{\Delta t} + \frac{A_{\rm U3} - A_{\rm U2}}{\Delta t} \right) \qquad (86)$$

in which all subscripts refer to the grid points defined in Figure 12a. The upstream boundary condition is

in which Q_u is the carry-over discharge, if any, from the upstream end. Specifically, for overland flow, $Q_u = 0$. Replacing the partial derivatives in Eq. 84 by the corresponding finite-differences, Eqs. 85 and 86, yields

$$A_{p} = A_{U1} + A_{U2} - A_{U3} - \frac{\Delta t}{\Delta s} (A_{U2}V_{U2} + A_{U3}V_{U3} - Q_{u} - A_{U1}V_{U1})$$
$$+ 2\Delta t \left[\frac{L_{o}T_{o}r_{o}}{A_{o}V_{o}} (\bar{r} - \bar{1}) \bar{T} \frac{1}{\cos\theta} + \frac{L_{o}}{T_{o}\cos\theta_{o}} \bar{q}_{L} \right]$$
$$(88)$$

in which

$$\mathbf{r} = (\mathbf{r}_{U1} + \mathbf{r}_{U2} + \mathbf{r}_{U3} + \mathbf{r}_{P})/4$$
 (89)

$$\vec{i} = (i_{U1} + i_{U2} + i_{U3} + i_P)/4$$
 (90)

$$\bar{T} = (T_{U1} + T_{U2} + T_{U3})/3$$
 (91)

$$\overline{\cos\theta} = (\cos\theta_{U1} + \cos\theta_{U2} + \cos\theta_{U3} + \cos\theta_{P})/4 \quad . \quad . \quad (92)$$

$$q_{\rm L} = (q_{\rm LU1} + q_{\rm LU2} + q_{\rm LU3} + q_{\rm LP})/4$$
 (93)

Specifically, for overland flow, where $Q_u = 0$, $V_P = 0$, $\bar{q}_L = 0$, and $\bar{T} = T_{U1} = T_{U2} = T_{U3} = T$, Eq. 88 reduces to

then the depth of flow, $h_{\rm p},\ {\rm can}\ {\rm be}\ {\rm computed}\ {\rm from}$

$$h_{\rm P} = A_{\rm P} \left(\frac{A_{\rm o} \cos \theta}{D_{\rm o} \cos \theta} \right) \qquad (95)$$

In the gutter, the flow depth, h_P, must be computed simultaneously with the corresponding overland-flow profile. The procedure of this computation will be discussed in detail in the section on "Internal boundary conditions."

Downstream boundary conditions. The downstream boundary conditions at inlet depend on the flow conditions, viz., whether the flow is supercritical or subcritical.

In the case of supercritical flow, both points D and E' of C⁺ and C⁻ -characteristic curves fall inside the flow region, as shown in Figure 4b (i.e., to the left of the downstream end of gutter flow). Therefore, no boundary condition is needed to be specified and the velocity and depth of flow at the downstream end point P (Figure 12b), V_P and hp, can be obtained by treating point P as an interior grid point.

For subcritical flow, because point E of C⁻ -characteristic curve, falls outside the flow region, as shown in Figure 4a, finite-difference equations along C⁻ -characteristic curve, Eqs. 51 and 52, cannot be used. Water flowing into the inlet may be regarded as that of free overfall flow and the boundary condition there is assumed as a critical flow condition, Eq. 26, or in terms of dimensionless V_P and hp as

$$F_{o} \cdot \frac{V_{p}}{\sqrt{D_{p} \frac{\cos\theta_{p}}{\cos\theta_{o}} + h_{p}^{*}}} = 1 \qquad (96)$$

This is the boundary condition at the inlet for subcritical flow. Equation 96 has two unknowns, V_P and hp (or Dp) which can only be solved for by using another equation, either the C⁺ -characteristic difference equation, Eq. 50, or the finite-difference equation of continuity. Because of the intrinsic difficulty in evaluating the friction slope included in Eq. 50, as mentioned previously, it was decided to use the finite-difference equation of continuity which is formulated, in reference to Figure 12b, as follows:

$$A_{P} = A_{D1} + A_{D2} - A_{D3} - \frac{\Delta t}{\Delta s} (A_{D1}V_{D1} - A_{D2}V_{D2} - A_{D3}V_{D3} + A_{P}V_{P})$$
$$+ 2\Delta t \left[\frac{L_{o}T_{o}r_{o}}{A_{o}V_{o}} (\bar{r} - \bar{i}) \bar{T} \overline{\cos\theta} + \frac{L_{o}}{T_{o}\cos\theta_{o}} \bar{q}_{L} \right]$$

• • • • • (97)

in which all subscripts refer to the grid points defined in Figure 12b; and \bar{r} , \bar{i} , \bar{T} , $\bar{\cos}\theta$, and \bar{q}_L are computed by equations similar to Eqs. 89, 90, 91, 92, and 93, respectively, except that subscripts 'U1,'' 'U2,'' and 'U3'' for all variables in Eqs. 89 through 94 must be changed to subscripts 'D1,'' 'D2,'' and 'D3,'' respectively. Solving Eqs. 96 and 97 simultaneously for V_P and D_P requires the internal boundary condition between overland flow and channel flow at the inlet because the cross-sectional area of flow, A_P , varies with the location of the internal boundary and can be computed by the Newton-Raphson Second Method.

The calculation of the carry-over flow. There are two types of storm inlet on the highway: one is called grate inlet and the other, curb-opening (or side-opening). Each type can be with or without gutter depression.

For the grate inlet, the carry-over flow may occur in three ways:

- 1. Flow past the inlet between the curb and the first slot, q_1 .
- 2. Flow outside the last slot, q_2 .
- 3. Carry-over across the grate itself.

Although from the model studies in the laboratory, Li, Geyer, and Benton (1951) derived the minimum length of grate inlet required to trap the central portion of the flow, the minimum length of grate inlet required to trap the outside portion of flow with or without gutter depression, and carry-over flow rates, q_1 and q_2 , it has been found that the derived equations are not valid outside of their experimental conditions. The complicated flow conditions at the inlet area has so far prevented the development of a sound analytical method to compute inlet efficiencies. For simplicity, the inlet will be assumed herein to be operated at 100 percent efficiency without further determining the carry-over flow rates.

The calculation of the carry-over flow for the curb-opening type inlet is not available at present (Li, Sortegerg, and Geyer, 1951).

Internal boundary conditions. Equations 27 and 28 can be written in a dimensionless form by using the normalized variables defined in Eq. 35 and

$$\dot{\xi}_{\star} = \dot{\xi}/V_{o}, \quad \ddot{h}_{\star} = \dot{h} \cos\theta_{o}/D_{o}$$
 (98)

After dropping asterisk subscript, normalized Eqs. 27 and 28 become

$$\mathbf{V}_{\mathrm{L}} = \mathbf{V}_{\mathrm{R}} + |\mathbf{A}_{\mathrm{L}} - \mathbf{A}_{\mathrm{R}}| \left[\frac{\beta}{\mathbf{F}_{\mathrm{o}}^{2}} \frac{1}{\mathbf{A}_{\mathrm{L}}\mathbf{A}_{\mathrm{R}}} \left(\frac{\mathbf{A}_{\mathrm{L}}\mathbf{h}_{\mathrm{L}} - \mathbf{A}_{\mathrm{R}}\mathbf{h}_{\mathrm{R}}}{\mathbf{A}_{\mathrm{L}} - \mathbf{A}_{\mathrm{R}}} \frac{\cos^{2}\theta}{\cos^{2}\theta} + \mathbf{h}^{*} \right) \right]^{1/2}$$

$$(100)$$

Equations 99 and 100 are the internal boundary conditions which will be incorporated with three other equations for solutions of five unknowns, A_L , V_L , A_R , V_R , and ξ .

For convenience, the computation for obtaining the discontinuity solution by using Eqs. 99 and 100 can proceed in two steps (Chen and Chu, 1973): One is at the inception of a discontinuity and the other is during its propagation. The computation procedures for the two steps are somewhat different and the former is more difficult than the latter.

1. Generation of a discontinuity. Consider that previously (i.e., at a time level t) there is no discontinuity and a discontinuity suddenly occurs at time level $(t + \Delta t)$ between two grid points A and B, as shown in Figure 13.

Whether or not a discontinuity occurs between two grid points, A and B, at any time level requires a test of Eq. 100 at each grid point with the help of extrapolation formulas extended from the adjacent grid points of both sides. In addition to Eqs. 99 and 100, four linear extrapolation formulas such as formulated by Chen and Chow (1968) are needed in the case of occurrence of a discontinuity for solution of six unknowns: A_L , V_L , A_R , V_R , $\dot{\xi}$, and s_J , where s_J is the location of the discontinuity. In order to satisfy Eq. 100, V_L must be greater than V_R . This condition for Eq. 100 in turn leads to the inequality that

 $V_A > V_B$ (101)

which should be satisfied if there is a discontinuity between two grid points, A and B.

With Eq. 100 and four extrapolation formulas, an iteration procedure such as the Newton-Raphson Second Method can be developed to locate the discontinuity, s_J , between points A and B. After s_J , A_L (or h_L), V_L , A_R (or h_R), and V_R are determined, the propagation velocity, ξ , can

Figure 13. Generation of the discontinuous water surface.

a. For
$$A_L < A_R$$
 and $V_L > V_R$

b. For $A_L > A_R$ and $V_L > V_R$

Figure 14. Propagation of a discontinuity.

be computed by means of Eq. 99. Other variables such as h_L and h_R are evaluated from channel geometric relationships. As a final check, the solutions so obtained should satisfy another set of inequalities, Eqs. 29 and 30 in a dimensionless form (for $V_L > V_R > \xi$ and $A_L < A_R$) or Eqs. 32 and 33 in a dimensionless form (for $\xi > V_L > V_R$ and $A_L > A_R$); otherwise, there would be no discontinuity between grid points A and B.

2. Propagation of a discontinuity. To find the new location of the discontinuity, s_J , as shown in Figure 14, the conjugate depths, h_L and h_R , and velocities, V_L and V_R , of the discontinuity, and the propagation velocity of the discontinuity, $\dot{\xi}$, at time level (t + Δ t) from the previous ones at time level t seems relatively easy. The new location, s_J , is related to the previous one, s_T by

in which Δt is the time increment adopted in the computation at interior points and cannot be taken to be greater than the Courant criterion. Once the new location of the discontinuity is determined, the new values of ξ , V_L , V_R , h_L and h_R are computed by using the two discontinuity equations, Eqs. 99 and 100, and three appropriate characteristic difference equations formulated along the corresponding characteristic curves for each of the two adjacent gradually varied flow regions from the point of discontinuity. Because there are only five unknowns to be determined, two characteristic difference equations from one flow region and only one characteristic difference equation from the other flow region are sufficient for unique solution. The flow region that has only one characteristic difference equation can be determined from inequalities, Eqs. 31 and 34, for two different cases.

In the case of $A_L < A_R$ and $V_L > V_R > \dot{\xi},$ Eqs. 29, 30, and 31 in a dimensionless form are:

$$V_{\rm L} - \dot{\xi} > \frac{1}{F_{\rm o}} / D_{\rm L} \frac{\cos\theta}{\cos\theta} + h_{\rm L}^{*} \qquad (103)$$

$$V_{R} - \dot{\xi} < \frac{1}{F_{o}} / D_{R} \frac{\cos\theta}{\cos\theta} + h_{R}^{*} \qquad (104)$$

and

respectively. From the expressions for C^+ - and C^- -characteristic curves (for $\beta = 1$) in the flow regions ''L'' and ''R,'' and the inequality, Eq. 105, it can readily be seen that there are two characteristic curves, C_L^+ and C_L^- , in flow region ''L,'' but only one characteristic curve, C_R^- , in flow region ''R,'' as shown in Figure 14a. Therefore, the characteristic difference equation along C_R^+ in flow region ''R'' is not needed for the computation of the discontinuity in this case (Figure 14a).

In the case of $A_L > A_R$ and $\xi > V_L > V_R$, Eqs. 32, 33, and 34 in a dimensionless form are:

$$\dot{\xi} - V_{\rm L} < \frac{1}{\mathbf{F}_{\rm o}} / D_{\rm L} \frac{\cos\theta}{\cos\theta} + h_{\rm L}^{\star} \qquad (106)$$

$$\dot{\xi} - V_{\rm R} > \frac{1}{\mathbf{F}_{\rm o}} / D_{\rm R} \frac{\cos\theta}{\cos\theta} + h_{\rm R}^{\star} \qquad (107)$$

and

$$V_{L} + \frac{1}{F_{o}} \sqrt{D_{L} \frac{\cos\theta}{\cos\theta} + h_{L}^{*}} > \dot{\xi} > V_{R} + \frac{1}{F_{o}} \sqrt{D_{R} \frac{\cos\theta}{\cos\theta} + h_{R}^{*}}$$
$$> V_{R} - \frac{1}{F_{o}} \sqrt{D_{R} \frac{\cos\theta}{\cos\theta} + h_{R}^{*}} \qquad (108)$$

respectively. Again, from the expressions for C^+ - and C^- -characteristic curves and the inequality, Eq. 108, it can be shown that the characteristic difference equation along C_{L}^- in flow region "L'' is not required in this case (Figure 14b).

The preceding criteria for the selection of three characteristic difference equations for use in the computation of a discontinuity are believed to be unique because they do not depend on the direction of the velocities, V_L and V_R , as well as the states of flow in regions "L" and "R." In other words, a discontinuity may occur and propagate (or disappear), regardless of subcritical or supercritical flow in regions "L" and "R," or a combination thereof, as long as the required conditions for different cases, as stated above, are satisfied.

A good example of the method for computing the discontinuity, as described above, is an advancing wave on the dry surface due to a moving rainstorm. When a moving rainstorm enters the upstream end with relatively small velocity, the water falling on the ground forms an advancing wave moving down the slope on the dry surface. In order for the preceding method to be valid, the singularity in the discontinuity equation, Eq. 100, where A_R is equal to zero because of the dry surface, has led to the assumption that the right-hand side of the discontinuity (i.e., on the dry surface) has a very small depth with the order of magnitude of the roughness size, k, or less. Regardless of how small A_R is assumed, Eq. 102 used to locate the advancing wavefront should remain valid if the previous location, s_J , is correct. Unfortunately, because the initial conditions of flow and hence the initial location of the wavefront were assumed, as mentioned previously, use of Eq. 102 right after the assumed initial conditions becomes questionable. In order to avoid an inaccuracy in the computation of the wavefront resulting from the use of Eq. 102, the following lumped equation of continuity is used to locate the wavefront:

$$Vol_2 = Vol_1 + Vol_{in} \qquad (109)$$

in which Vol₁ and Vol₂ are the volumes of water retained on the ground surface at time levels 1 and 2, respectively, and Vol_{in} is the total volume of water flowing into Vol₁ during Δt (i.e., from time level 1 to time level 2). Expressions of the volumes can be normalized by using A_0 times L_0 . In Eq. 109, Vol₁ and Vol_{in} are supposedly known or can be computed directly from input data at time level 1, while Vol₂ can be obtained from the results just computed at time level 2. An iteration procedure such as the Newton-Raphson Second Method can be set up to find s'_J as follows: (1) assume s'_J , (2) solve Eqs. 50 and 100 simultaneously for A_L (or h_L) and V_L , (3) compute ξ by use of Eq. 99, (4) check if Eq. 109 is satisfied, and (5) if Eq. 109 is not satisfied, repeat steps (1) through (4).

Another good example of the application of the discontinuity equations, Eqs. 99 and 100, is the calculation of the internal boundary between overland flow and channel flow, where the water surface in the gutter flow is assumed to be horizontal, such as shown by line AA' in Figure 15, but may become continuous (Figure 15a) or discontinuous (Figure 15b) with the water surface of overland flow depending upon the flow conditions at the internal boundary. The generation and propagation of the discontinuous internal boundary can proceed in the same way as described above. In this case, the depth on the right-hand side of the discontinuity, h_R , is the depth of gutter flow, h_C , which can be calculated from the geometric relationship of the gutter cross-section in relation with the overland flow profile and the location of the internal boundary. The velocity and depth on the left-hand side of the discontinuity, VI, and hI, can be extrapolated from the two adjacent upstream grid points, KN-1 and KN-2, (see Figure 15b) in the overland flow part.

If there is no discontinuity at the internal boundary, i.e., inequalities 107 and 108 are not satisfied, the location of the internal boundary is the intersection of the water surface between overland flow and gutter flow (see Figure 15a).

b. Discontinuous internal boundary

If the gutter flow is of fixed channel type, as shown in Figure 16, as along as the depth of flow, h_G , in the gutter is less than the allowable maximum channel depth, h_{ch} , the internal boundary between the overland flow and channel flow is fixed. Therefore, the boundary condition at the downstream end (i.e., grid point KN) of overland flow is an overfall condition, Eq. 96, and the method described in the section of downstream boundary condition can be applied to the computation of the depth and velocity of overland flow at grid point, KN.

Geometric elements of gutter flow section

The computer model so developed consists of a number of equations expressed in terms of basic geometric elements of the flow section such as the flow cross-sectional area, A, the flow depth, h, the hydraulic radius, R, the hydraulic depth, D, the depth of the centroid of the flow cross-sectional area, h, and the top width, T. Given or specified one of the geometric elements for a channel with fixed flow boundary such as fixed channel-type gutter flow (Figure 16), the rest of the geometric elements can readily be determined from the relationships characterizing the geometry of the flow section. This is not the case, however, for a channel with moving boundary, such as curb-type gutter flow as shown in Figure 15, in which in addition to one of the geometric elements as indicated above, the top width, T, that moves independently with time must be specified by extrapolation from the geometry of gutter for known gutter and overland flow depths. Because the correct expressions of the geometric elements are essential to the computation of gutter flow, especially for curb type gutter, they are formulated and appended to this report (Appendix 2).

Location of critical section

The location of the critical section (i.e., the section at which the flow changes from subcritical to supercritical) has no direct bearing on the determination of hp and Vp at each grid point in the various flow regimes. Nevertheless, it was computed wherever such a change in the flow regime took place because it can be used to check the assumptions made in the evaluation of the flow resistance for sheet flow over a rough or smooth surface. Let there be a critical section in a channel between two grid points A and B and x_S denote the position of the critical section. Then the following relationship must exist at x_S [Chen and Chow (1968)]:

$$V_{\rm S} = \frac{1}{\mathbf{F}_{\rm o}} \sqrt{D_{\rm S} \frac{\cos\theta}{\cos\theta} + h_{\rm S}} \qquad (110)$$

in which the velocity and hydraulic depth of flow at the critical section, V_S and D_S , can be linearly interpolated from the known values of V and D at points A and B; or

Figure 16. Fixed channel type gutter flow.

$$V_{\rm S} = V_{\rm A} + \frac{x_{\rm S} - x_{\rm A}}{\Delta x} (V_{\rm B} - V_{\rm A})$$
 (111)

$$D_{S} = D_{A} + \frac{x_{S} - x_{A}}{\Delta x} (D_{B} - D_{A})$$
 (112)

Substituting Eqs. 111 and 112 into Eq. 110 yields a quadratic equation in x_S or Δx_S , in which $\Delta x_S = x_S - x_A$, as follows:

in which

$$A_{1} = \left(\frac{V_{B} - V_{A}}{\Delta x}\right)^{2} \qquad (114)$$

$$B_{1} = \frac{2V_{A}(x_{B} - x_{A})}{\Delta x} - \frac{1}{F^{2}} \left(\frac{D_{B} - D_{A}}{\Delta x}\right) \frac{\cos\theta}{\cos\theta_{O}} \qquad (115)$$

$$C_{1} = V_{A}^{2} - \frac{1}{F_{o}^{2}} \left(D_{A} \frac{\cos\theta}{\cos\theta} + h_{S}^{*} \right) \qquad (116)$$

The solution of the quadratic equation, Eq. 113, is well known; namely

$$\Delta x_{\rm S} = \frac{-B_1 + \sqrt{B_1^2 - 4A_1C_1}}{2A_1} \qquad (117)$$

Because Δx_S must be positive and C_1 is always negative, only a positive sign in front of the square root sign in Eq. 117 is used.

The foregoing procedures of computation are programmed in FORTRAN language and executed on the UNIVAC 1108 computer. Detail of the whole program is appended to this report.

PARAMETRIC INFILTRATION MODEL FOR SIDESLOPE

The highway sideslope is either paved or grassed. If it is paved, the ground surface is impervious (i = 0) and the analysis made previously for the computation of runoff from the roadway can directly apply. However, if the sideslope is grassed, the ground surface is pervious [i=f(t)]and the infiltration rate, i(t), that varies with time will have to be evaluated at any desired time level along with the numerical computation of the surface runoff. Rigorously speaking, the infiltration rate can be computed by solving the boundary-value problem of rain infiltration (Chen, 1975c) in which the flow equation used may be the Richards equation. However, it is simpler and more useful in the engineering practice to compute the infiltration rate by means of a small number of parameters combined in certain forms of algebraic equation than by use of the Richards equation. Although many algebraic infiltration equations have been published in the literature, the major obstacle that has prevented more effective use of them lies in the difficulty in the evaluation of their parameter values. In order to have them widely accepted as predictive models in the subsurface runoff computation, reappraisal on the methods determining their parameter values as well as theoretical concepts behind their developments is necessary. This task was accomplished in another phase of the research project (Chen, 1975c).

All the algebraic infiltration equations were developed for computing under a special condition the maximum possible rate of infiltration (hereafter referred to as infiltration capacity). If the rainfall intensity is greater than the final constant infiltration rate (or the hydraulic conductivity at saturation), the rain infiltration process in general can be divided into two stages: One is before ponding and another after ponding. Therefore, a parametric infiltration model, if valid, must consist of both stages. Before ponding the infiltration rate is equal to the rainfall intensity and after ponding it is greater than or equal to the infiltration capacity, depending upon whether or not there is a non-zero water depth on the soil surface. Mathematically the parametric infiltration model can be expressed as

i = r(t) for $0 \le t \le t_p$ (118) i = f(t) for $t \ge t_p$ (119)

in which t_p is the time of ponding. Note that the rainfall intensity, r(t), may or may not vary with time, and that the infiltration capacity function, f(t), can be in any form of the algebraic infiltration equations except for the Green-Ampt equation that is expressed implicitly as a function of f and t. Evidently, in addition to the parameters in f(t) needed to be evaluated, the time of ponding, t_p , must be determined before the parametric infiltration model, Eqs. 118 and 119, can apply.

Each of the available algebraic infiltration equations to be used in Eq. 119 such as the Green-Ampt equation, the Kostiakov equation, the Philip equation, the Horton equation, and the Holtan equation was already analyzed by the writer in another report (Chen, 1975c). However, for simplicity, only the generalized Kostiakov equation that is believed to be the most suitable form in fitting different infiltration capacity curves for various soil-cover-moisture complexes is presented herein.

The Kostiakov equation with three parameters A, t_0 , and α may be expressed as

$$f(t) = f_{\infty} + A(t - t_{0})^{-\alpha}$$
 (120)

in which f_{∞} is the final infiltration rate equal to the hydraulic conductivity of soil at saturation, K_s . Factors that affect the infiltration capacity are numerous. Combined effects of a specific soil, a specific cover, and a specific antecedent moisture condition on the infiltration capacity must be reflected on the parameter values of A, t_o , and α . According to the recent study conducted by the writer (Chen, 1975c), the original three-parameter infiltration model, Eq. 120, can be shown to be in a typical form of the two-parameter model because the parameter t_o can be expressed in terms of the other parameters, A and α , aside from r, the rainfall intensity. The respective expressions of t_p and t_o in terms of A, α , and r, are recapitulated from Chen (1975c) for use in the present study as follows:

$$t_{p} = \frac{1}{1 - \alpha} \left(\frac{A}{\bar{r} - K_{s}} \right)^{1/\alpha} \qquad (121)$$

$$t_{o} = \frac{\alpha}{1 - \alpha} \left(\frac{A}{\bar{r} - K_{s}} \right)^{1/\alpha} \quad \text{or } t_{o} = \alpha t_{p} \quad . \quad . \quad (122)$$

in which r is the mean rainfall intensity that also varies with time and is defined as

$$\bar{r}(t) = \frac{1}{t} \int_{0}^{t} r(t) d\tau$$
 (123)

Because of the definition of $\bar{r}(t)$, Eq. 123, the determination of the t_p value by using Eq. 121 can only be accomplished by trial and error as follows: (1) Assume t and then compute \bar{r} from Eq. 123; (2) substitute the \bar{r} value into Eq. 121 for the computation of the t_p value; and (3) if the value of t_p just computed is larger than the time, t, at which $\bar{r}(t)$ was determined, the computation of \bar{r} and t_p will continue until t = t_p .

The values of A and α for each combination of various soil-covermoisture complexes corresponding to distinctly different field conditions of rainwater intake on the highway sideslope may be first estimated according to the four major hydrologic soil groups and then modified in accordance with plant covers and antecedent soil moisture conditions. This and other aspects of soil-cover-moisture complex analysis of the parametric infiltration model were discussed in detail in the other phase of the research project (Chen, 1975c).

DESIGN STORM PATTERNS

Knowledge of the time distribution of rainfall in heavy storms constitutes a basis for design of an urban storm drainage system. Several methods have been developed to formulate a synthetic (design) storm pattern for the urban watershed runoff study. An extensive review of literature on the various formulations of design storms conducted by the writer (Chen, 1975b) has led to the development of the following general approach in which design storm patterns using the rainfall intensityduration-frequency relationships were developed for all localities in the United States.

The rainfall intensity-duration-frequency relationship that can be used to derive the design hyetograph equation may be expressed as

in which r_{av} is the average rainfall intensity in inches per hour; t_d is the time duration of rainfall in minutes; and a, b, and c are parameters depending upon the location and frequency of the storm under study. It was found from the U.S. Weather Bureau Technical Paper Nos. 25 and 40 that a positive sign in Eq. 124 mainly applied to a large section of the country-perhaps to the portion east of the Rocky Mountains-while a negative sign generally applies to the west of the Rocky Mountains (Chen, 1975b). However, in the case of the negative b, Eq. 124 is not valid for $t_d \leq b$.

Consider that the area under a curve representing the time distribution of the rainfall intensity, r, from the beginning of rainfall to any time, t, is equal to that having r_{av} for the same time period, namely

 $\int_{0}^{t} r d\tau = r_{av}t \qquad . \qquad . \qquad . \qquad . \qquad . \qquad . \qquad (125)$

in which τ is the integration variable for time and r is the rainfall intensity in inches per hour at any time in the synthetic storm. Substituting the expression of r_{av} (from Eq. 124 after changing its t_d to t) into Eq. 125 and then differentiating the result with respect to t yields the design hyetograph equation.

Hyetograph Equations

The design hyetographs so formulated are somewhat different between the case of the positive b and that of the negative b. Furthermore, the design storms in each case can be classified into a completely advance type storm pattern, a completely delayed type storm pattern, and an intermediate type storm pattern. The three types of storm pattern are defined according to the skewness of the pattern, γ , (i.e., the ratio of the time before the peak to the total time duration).

Case (1): For positive b

For a completely advanced type storm pattern ($\gamma = 0$)

$$r = \frac{a[(1 - c)t + b]}{(t + b)^{1+c}} \qquad (126)$$

For a completely delayed type storm pattern ($\gamma = 1$)

$$r = \frac{a[(1 - c)(t_d - t) + b]}{[(t_d - t) + b]^{1+c}} \quad \text{for } 0 \le t \le t_d \quad . \quad . \quad (127)$$

For an intermediate type storm pattern (0 < γ < 1)

$$r = \frac{a[(1 - c)(t_d - t/\gamma) + b]}{[(t_d - t/\gamma) + b]^{1+c}} \quad \text{for } 0 \le t \le \gamma t_d \quad . \quad (128)$$

$$r = \frac{a[(1 - c)(t - \gamma t_d)/(1 - \gamma) + b]}{[(t - \gamma t_d)/(1 - \gamma) + b]^{1+c}} \text{ for } \gamma t_d \le t \le t_d \quad . \quad (129)$$

Case (2): For negative b (c < 1)

For a completely advanced type storm pattern ($\gamma = 0$)

$$\mathbf{r} = \frac{a}{b^{c}} \left(\frac{1-c}{1+c} \right)^{c} \quad \text{for } \mathbf{t} \leq \frac{2b}{1-c} \quad \dots \quad \dots \quad (130)$$

$$r = \frac{a[(1 - c)t - b]}{(t - b)^{1+c}} \quad \text{for } t \ge \frac{2b}{1 - c} \quad . \quad . \quad . \quad (131)$$

For a completely delayed type storm pattern ($\gamma = 1$)

$$r = \frac{a[(1 - c)(t_{d} - t) - b]}{[(t_{d} - t) - b]^{1+c}} \quad \text{for } 0 \le t \le t_{d} - \frac{2b}{1 - c}$$

$$r = \frac{a}{b^{c}} \left(\frac{1 - c}{1 + c}\right)^{c} \quad \text{for } t_{d} - \frac{2b}{1 - c} \le t \le t_{d} \quad . \quad . \quad (132)$$

For an intermediate type storm pattern (0 < γ < 1)

$$r = \frac{a[(1 - c)(t_{d} - t/\gamma) - b]}{[(t_{d} - t/\gamma) - b]^{1+c}} \text{ for } 0 \le t \le \gamma t_{d} - \frac{2b\gamma}{1 - c}$$
. . . (134)

$$r = \frac{a}{b^{c}} \left(\frac{1-c}{1+c}\right)^{c} \text{ for } \gamma t_{d} - \frac{2b\gamma}{1-c} \le t \le \gamma t_{d} + \frac{2b(1-\gamma)}{1-c}$$
(135)

$$r = \frac{a[(1 - c)(t - \gamma t_d)/(1 - \gamma) - b]}{[(t - \gamma t_d)/(1 - \gamma) - b]^{1+c}} \quad \text{for } \gamma t_d + \frac{2b(1 - \gamma)}{1 - c} \le t \le t_d$$
(136)

The methods of determining the parameter values of a, b, c, and γ were described in detail in the other phase of this research project (Chen, 1975b).

Mean Rainfall Intensity

The mean rainfall intensity, \mathbf{r} , needed in the calculation of the time of ponding, t_p , by means of Eq. 121 can be expressed specifically for the design storm equations, Eqs. 126 through 136. Each of the expressions of r in Eq. 126 through 136 can be integrated with respect to time and then divided by the elapsed time of rainfall, t, as shown in Eq. 123. The following results for different cases and types of storms are obtained.

Case (1): For positive b

1. $\gamma = 0$

2.
$$\gamma = 1$$

$$\mathbf{r} = \frac{1}{t} \left[\frac{a\gamma t_d}{(t_d + b)^c} + \frac{a(t - \gamma t_d)}{[(t - \gamma t_d)/(1 - \gamma) + b]^c} \right] \quad \gamma t_d \le t \le t_d$$

$$(140)$$

Case (2): For negative b (c < 1)
1.
$$\gamma = 0$$

$$\mathbf{r} = \frac{a}{b^{c}} \left(\frac{1-c}{1+c} \right)^{c} \qquad t \leq \frac{2b}{1-c} \qquad \dots \qquad (141)$$

$$r = \frac{a}{(t - b)^{c}}$$
 $t \ge \frac{2b}{1 - c}$ (142)

2. $\gamma = 1$

· .

$$\vec{r} = \frac{1}{t} \left[\frac{at_{d}}{(t_{d} - b)^{c}} - \frac{a}{b^{c}} \left(\frac{1 - c}{1 + c} \right)^{c} (t_{d} - t) \right] t_{d} - \frac{2b}{1 - c} \le t \le t_{d}$$
(144)

$$\vec{\mathbf{r}} = \frac{1}{t} \left[\frac{a\gamma t_d}{(t_d - b)^c} + \frac{a(t - \gamma t_d)}{[(t - \gamma t_d)/(1 - \gamma) - b]^c} \right]$$

$$\gamma t_d + \frac{2b(1 - \gamma)}{1 - c} \le t \le t_d \qquad (147)$$

ACCURACY OF THE MATHEMATICAL MODEL

An urban highway watershed consists of several sub-basins, as described previously. Runoff from each of these sub-basins jointly or independently contributes to the total flow of storm water at the drainage inlet. For example, storm water on roadway and shoulder first moves as overland flow, then at the far downstream end of the overland flow enters as gutter flow which may or may not collect an additional amount of water coming from the sideslopes, depending upon a highway drainage condition, and finally all the storm water so collected enters the inlet, if the inlet is operated with 100 percent efficiency. Whether the computer model so formulated can accurately simulate all the parts of the rainfall-runoff processes in a highway watershed must be examined. In other words, the physically-determined values of the friction parameters such as C, ε , k, a, and b embedded in the friction slope expressions (e.g., Eqs. 81 and 82) have yet to be validated before their general use in practice. For convenience, the validation of the computer model was carried out in two stages: First, it was made on the overland flow only and next, on the combined overland and gutter flow.

The accuracy of the computer model developed for overland flow was checked by using basic hydrograph field data obtained from the Los Angeles District Corps of Engineers (1949-51) airfield drainage investigation at Santa Monica, California, and that for combined overland and channel flow, by using field data collected from two urban highway watersheds in the Salt Lake City area, Utah (Fletcher and Chen, 1975).

Examination of Overland Flow Computer Sub-model

Six different sets of input data were chosen from the Corps of Engineers (1949-51) airfield drainage hydrographs for examining the overland flow computations on a paved surface. Table 1 lists for 6 runs the values of the rainfall intensity and duration, channel length, and bed slope for a paved surface tested.

Included in the Corps of Engineers (1949-51) airfield drainage investigations are the measured hydrographs for simulated turf surfaces which were made either of expanded metal or of combined chickenwire and expanded metal. No attempt was made, however, to examine the hydrographs for simulated turf surfaces because the values of the parameters, a and b in Eq. 82 and k in Eq. 19, for such surfaces are unknown. Note that the determination of the friction parameters for unknown surfaces requires an evaluation (identification) process using either a physical model (Chen, 1975a) or a mathematical model (including the governing equations with appropriate initial and boundary conditions) as well as a set of concurrent input (rainfall) and output (hydrograph) measurements.

Present Study Run No.	LADCE Test Code No.	LADCE Test Date M/D/Y	"Rainfall" Application rate r(in./hr)	"Rainfall" Application Duration t _d (min.)	Channel Length L(ft)	Bed Slope S(%)
1	A6	10/27/49	8.128	8		0.5
2 .	A7	12/ 3/49	0.860	16	84	0.5
3	A45	10/25/49	8.306	14	336	0.5
4	. B6	9/22/50	7.350	9	84	1.0
5	В6	9/22/50	7.230	1.15,1.50,1.75	84	1.0
6	C10	3/24/51	7.460	6	168	2.0

Table 1. List of input data for Los Angeles District Corps of Engineers (LADCE) airfield experimental runs on a paved surface.

The latter approach using a mathematical model is an inverse problem which has been solved by trial and error (Burman, 1969; Schreiber and Bender, 1972) and more systematically and efficiently by an influence coefficient algorithm developed by Becker and Yeh (1972a, 1972b, and 1973) and Yeh (1973). Although the influence coefficient algorithm has been shown to be very powerful in the evaluation of the friction parameters embedded in a hyperbolic partial differential equation describing the hydrodynamics of unsteady open channel flow, it is at present limited to the subcritical flow range that detracts us from its general application. From the practical point of view, however, it would be much simpler to determine the friction parameters experimentally for flow at the equilibrium state than the application of an optimization technique to an unsteady, nonlinear flow system by minimizing the maximum of the absolute values of the errors (differences) between the observations and the solutions of the system equations. For particular use in the present study, the friction parameters for natural turf surfaces have been experimentally determined (Chen, 1975a), as already summarized in the previous section. Since it is not the objective of this study to develop a new method to identify the friction parameters, the parameter identification problems in unsteady open channel flows are not discussed further herein.

The roughness size of a paved surface used in the Corps of Engineers (1949-51) airfield drainage investigation happened to be approximately equal to that of the glued-sand surface used in Woo and Brater's (1961) experiments. It is thus necessary to examine the validity of Eq. 82 with a = 235 and b = 0.296 using the field data. Note that in a similar study involving the comparisons of measured and computed hydrographs, Chu (1973) has used Eq. 81 instead of Eq. 82.

Rainfall duration for each field run selected, except for run No. 5, was long enough so that the outflowing discharge had actually attained the equilibrium state before rain stopped. All the runs were performed on a 3-ft wide impervious paved surface which has roughness equivalent to Manning's n = 0.012.

The roughness size, k, for turbulent flow in the mathematical model (Eq. 19) must be specified before executing it on the computer. The Strickler formula can be used to convert the value of Manning's n to that of the hydraulically 'equivalent' roughness size, k. However, considering the wide range of the relative roughness, R/k, that overland flow covers, one may prefer the following formula to the Strickler formula.

This equation was derived by Chen and Chow (1968) using the relationship between Eq. 19 and the Manning formula. Therefore, for given n = 0.012, k equals 0.0034 ft.

The distance interval, Δs , for the channel is obtained by dividing the channel length equally into 7 sections (arbitrary, i.e., the size sufficient in the computer operation within practical accuracy, but not too excessive) with each section having a length $\Delta s = L/7$, where L is the total length of the channel. Thus, $\Delta s = 12$ ft for all runs except for runs 3 and 6. The values of Δs for runs 3 and 6 were equal to 48 ft and 24 ft, respectively. Because the computation is conducted on a dimensionless basis, the dimension of the distance or distance interval is no longer important. The accuracy of the computation may change with the number of grid points selected, but it should not vary drastically unless the number of grid points considered is too small.

The time interval, Δt , can be determined by solving the Courant limit in Eq. 48. However, when the ground surface is initially dry, the flow starts with very small hydraulic depth, D, and velocity, V, which in turn give a large Δt for a fixed Δs from Eq. 48. Unfortunately, use of a large Δt at the initial state may produce computational instability which is often beyond control at subsequent time levels. To avoid such computation instability a much smaller Δt is required which, however, in terms of the increased computer time, cannot be considered as a practical improvement. Chu (1973) showed that the following empirical formula was suitable for use in the selection of Δt with this type of initial boundaryvalue problem.

in which Δt_{eq} is the time interval at the equilibrium stage and is set to a value a little bit less than the Courant limit; "Time" is the normalized time from the beginning of rainfall; and "Factor" is a

coefficient equal to 0.1 divided by the normalized initial time when the normalized initial time is greater than 0.1. If the normalized initial time is less than 0.1, "Factor" must be set to a value of 1. Note that use of Eq. 149 enables the numerical computation to be started with the time interval, $0.1\Delta t_{eq}$ or less. It was programmed in such a way that by the time the flow approaches the equilibrium state, the time interval is automatically controlled by the Courant criterion, Eq. 48, or Δt_{eq} .

The computed and measured hydrographs for run 1 through run 6 are depicted in Figures 17 through 22, respectively. It can readily be seen from these figures that the agreement between the computed and measured hydrographs in general seems to be good for most large flows under high intensities, but rather poor for small flows under low intensities or no rainfall. The poor results were anticipated for lack of a better expression of flow resistance than use of an empirical formula, Eq. 82, for shallow flows with flow rate per unit width, q, as low as 0.002 cfs/ft or less. It appears that there must exist some intrinsic natures of the low flow regime which the present theory failed to describe, but would account for large errors in the computed hydrographs. This and other peculiar features of the computed hydrographs, different from the measured ones, require justification prior to the general use of the overland flow submodel. The following comments with regard to the accuracy of the computed hydrographs merit attention.

1. At the beginning of rainfall, the computed hydrograph seems to rise ahead of the measured hydrograph for most runs examined. This consistent lag in time in the rising stage can be attributed to the initial detention of the rainfall by the surface material and depression storage, if any, before the surface runoff starts. It is well known that the initial detention refers to the storage effect due to overland flow in transit at the beginning of rainfall and varies with the degree of dryness of the surface material. Horton (1935) stated that this initial detention 'commonly ranges from 1/8 to 3/4 inches for flat areas and 1/2 to 1.5 inches for cultivated fields and for natural grass lands or forests.''

The specific magnitude of depression storage has never been measured in the field because of obvious difficulties in obtaining meaningful data. For practical purposes, however, an average value may be assumed. On moderate or gentle slopes, for example, Horton (1935) estimated that pervious surface depression 'can commonly hold the equivalent of 1/4 to 1/2 inch depth of water and even more on natural meadow and forest land.'' On the other hand, based on analysis of periods of high rates of rainfall and runoff, Hicks (1944) has estimated depression storage losses of 0.20, 0.15, and 0.10 inch for sand, loam, and clay, respectively. For a series of analyses, Tholin and Keifer (1960) assumed an overall total depression storage of 1/4 inch on pervious areas with a range of depths of specific depression up to 1/2 inch and 1/16 inch, on paved areas with a range of depths up to 1/8 inch; for another series these depths were doubled.

Figure 17. Comparison of measured and computed hydrographs for run 1 of Los Angeles District Corps of Engineers Airfield Experiment.

Figure 18. Comparison of measured and computed hydrographs for run 2 of Los Angeles District Corps of Engineers Airfield Experiment.

Figure 19. Comparison of measured and computed hydrographs for run 3 of Los Angeles District Corps of Engineers Airfield Experiment.

Figure 20. Comparison of measured and computed hydrographs for run 4 of Los Angeles District Corps of Engineers Airfield Experiment.

Figure 21. Comparison of measured and computed hydrographs for run 5 of Los Angeles District Corps of Engineers Airfield Experiment.

ξ8

Figure 22. Comparison of measured and computed hydrographs for run 6 of Los Angeles District Corps of Engineers Airfield Experiment.

The small depth assumed at the initial state in the present numerical scheme, as described in the preceding section, is tantamount to assuming the initial detention, though it appears much smaller than what should be in terms of Horton's (1935) suggested values. The hardest to determine is, of course, the magnitude of depression storage which is unknown a priori and may vary from case to case although one can easily estimate it using a least squares procedure by best fitting the computed hydrograph to the measured one or by trial and error. For simplicity, however, the adequate magnitude of depression storage is not imposed in the model at this stage, partly because of the necessity in evaluating the difference between the measured and computed hydrographs resulting from this unknown, but important, variable and partly because of its relatively insignificant effect on the hydrograph, magnitudewise and timewise, under a uniformly prolonged storm except by a time lag (or shift in time coordinate) corresponding to the length of time required to fill it up. In general, the more nonuniform in space and time a given storm, the more sensitive is the peak and shape of the computed hydrograph to the difference in the amount of depression storage assumed. This and other possible improvements of the computer model will be considered in the later computation, especially when field data on storm and runoff from the two urban highway watersheds in the Salt Lake City area are analyzed.

2. In all of the measured hydrographs, it is observed that the discharge suddenly increases by a small amount immediately after rain stops. This is probably due to the spontaneous disappearance in the resistance force produced by the raindrops on the water surface. This phenomenon is prominent for runs 1 and 3 under heavy rain on small slopes such as shown in Figures 17 and 19 respectively. Apparently, the additional resistance to the flow resulting from the raindrop impact was not accurately accounted for by the overpressure head alone, as expressed by Eq. 6. It is believed that raindrops not only increase the pressure of the flow, but also affect its velocity distribution which has not been considered in this study.

3. Whether or not the computed runoff rate per unit width, q, is stable and convergent at the equilibrium state depends in some degree upon the states or regimes of flow predominating over the bed. Basing on the computer outputs obtained from the six runs, it is discovered that the effect of gravity relative to inertia, as represented by the Froude number, upon the computational stability and convergency of flow is much greater than that of viscosity relative to inertia, as represented by the Reynolds number. For example, the computed hydrograph for run 1 (Figure 17) under a uniform application rate is quite stable and converges to the theoretical value at the equilibrium state where the flow so computed is in the regime being all the way subcritical, partially laminar upstream, and partially turbulent downstream. Although the flow for run 3 is also subcritical all the way from the upstream end to the downstream end, the computer model apparently underestimated the runoff rate at the equilibrium state (Figure 19). A comparison of the computed flow regimes for run 1 and run 3 reveals that there is a significant difference percentagewise in the Froude

number along the channel, but not very much in the Reynolds number. The flow in run 1 is subcritical, but not so nearly critical ($\mathbf{F} = 1$) as found in run 3. It appears that the adverse effect of gravity on the computational stability and convergency worsens with the increase in the Froude number. This is exemplified by the computed hydrographs for runs 4 and 6, as shown in Figures 20 and 22, respectively.

The oscillation of the computed runoff rate, q, at the quasiequilibrium state for run 4 (Figure 20) seems to be a typical flow phenomenon resulting from the time-varying state of flow. In this case, the flow produced under a given input and a certain combination of channel conditions is computed sometimes as subcritical all the way and sometimes as partially supercritical downstream, resulting in the oscillation of the computed q corresponding to the periodic change in the state of flow. In other words, when the flow is found all the way subcritical, the computed q is just about the theoretical value at the equilibrium state, whereas it rises more than the theoretical value when the flow is partially supercritical downstream. The overestimation of q as a result of a high Froude number in flow can be more clearly demonstrated in Figure 22 for run 6 in which the flow over a large portion of the channel length is found supercritical.

4. The computed peak discharge, as measured in terms of its magnitude and time of occurrence, in response to each of the various non-equilibrium durations of the ''rainfall'' time (e.g., $t_d = 1.15$, 1.50, and 1.75 minutes in Figure 21) confirms quite well to the measured value. It appears that the longer the duration of the application time, the higher is the accuracy of the computed peak discharge, both magnitudewise and timewise.

5. The accuracy of the computed runoff rate, q, worsens noticeably with the lower flow, as indicated previously. A typical example of this poor computation using the present technique is depicted in Figure 18 for run 2 under an application rate less than 1 in./hr. The computer model underestimated quite badly the theoretical value for run 2 at the equilibrium state. The underestimation of the q for very low flows under small application rates is also evidenced in the lower part of the computed hydrograph in the receding stage of all runs. Despite this technical problem in the computation of such low flows, no attempt could be made to improve the present approach for lack of a better method presently available in the computation. Of course, in future studies, any new method which is found to improve the numerical computation of low flows can be incorporated into the computer model without impairing the validity of the present approach.

6. Errors involved in the computer results would more likely increase with the incorrect evaluation of the Darcy-Weisbach friction coefficient, f, than with the reduction in the number of grid points adopted in the computation. Because the present numerical scheme has been developed on a dimensionless basis, accuracy in the computation does not seem to be greatly affected by the distance interval, Δs , unless the number of

grid points selected becomes excessively too small to carry the normal operation of the expected computation. With the present approach, as described previously, dividing the channel length into a number of sections less than 4 is not recommended. For illustrating the sensitivity of accuracy of the computation to the distance interval (or the number of grid points), the hydrographs for run 1 were again computed by using $\Delta s = 6$ and 21 ft and are plotted in Figure 23 for comparison with the one using $\Delta s = 12$ ft (Figure 17). It can be readily seen from Figure 23 that the computation by using 5 grid points (i.e., equivalent to 4 sections plus 1 for the end point) yields as good accuracy as the ones produced by using the larger numbers of grid points. Since one of the major concerns regarding the use of the explicit numerical scheme is the comparatively large amount of the computer time required in the solution over a prolonged time span of rainfall, the reduction in the number of grid points down to as minimum as 5 for a channel of any length without impairing the accuracy of computation may be considered as a practical improvement. Henceforth, the minimum number of grid points, namely 5, will be taken in the computation if the situation permits.

Examination of Combined Flow Computations

Rainfall-runoff data on major storms during the 1972-73 rainy season (April to November) from two typical urban highway cross-sections in the Salt Lake City area were collected for examining the validity of the combined flow computer model. Because details of hydrologic data collected both at Layton site and at Parleys site No. 1 and No. 2 were already given in another report (Fletcher and Chen, 1975) under the field phase of the present research project, they are not recapitulated herein except for those which were used as input data in the computer model.

Input data

Layton site. The highway watershed at Layton site is a 3-lane roadway with shoulders of different widths paved on both sides and connected along a steep sideslope on one side, as shown in Figure 24(a). The drainage area under investigation is not exactly rectangular in shape, but on the average may be considered as a rectangle, 574 ft long and 106 ft wide (on the horizontal plane), including the top width of a fixed channeltype gutter (Figure 16) lying in between the roadway and the sideslope. The transverse profile of the roadway plus the paved shoulders measured in the field is not a parabolic curve (Figure 6), but rather a straight line with cross slope varying from 1.96 percent at the upstream end of the channel to 1.24 percent at the inlet side. For simplicity, the average cross slope of the roadway and the paved shoulders may be taken as 1.6 percent. The slope of the sideslope also varies from 64.4 percent to 60.5 percent at the upstream and downstream ends of the channel, respectively. Again, for simplicity, the average value, 62.5 percent, was used in the computation. The gutter slope was measured at 0.296 percent.

Figure 23. Comparison of computed hydrographs for various distance intervals or number of grid points used in the computation of run 1.

The roughness size of the road surface including the roadway and paved shoulders was assumed that of glued sand (Woo and Brater, 1961) or Los Angeles District Corps of Engineers' (1949-51) paved surface which possesses approximately k = 0.0034 ft. The sideslope and the drainage channel are covered with Crested Wheat grass which does not look so dense as the ones tested in the laboratory environment (Chen, 1975a). Despite this discrepancy in appearance between the grasses tested and simulated, the C value in Eq. 21 for laminar flow was computed by means of Eq. 82 with the experimentally-determined values of a and b for good solid natural turf having been assumed throughout the present computation for lack of a better expression.

The infiltration rate was computed by using the Kostiakov equation (Eq. 120) in which $f_{\infty} = 0.05$ in./hr, $\alpha = 0.5$, and the value of A was determined, for practical purposes, in terms of the potential infiltration, S, in inches as (Chen, 1975c)

$$A = [0.2 \ S(1 - \alpha)]^{\alpha} (\vec{r} - f_{\alpha})^{1 - \alpha} (150)$$

in which S = 0.05 in. corresponding to the runoff curve number (CN) equal to 99.5 was evaluated from the estimated infiltration capacity curve (Fletcher and Chen, 1975).

Two storms were selected from the major storms analyzed and tabulated by Chen (1975b). An inspection of field data for major storms (Fletcher and Chen, 1975) reveals that there are not too many storms which are large and long enough to be meaningful for validation tests. The two storms selected at Layton site are those which occurred on September 5, 1972 and May 25-26, 1973. The former storm at rain gage L-2 can be best fitted by using Eqs. 128 and 129 with a = 28.19, b = 11.21, c = 0.980, $t_d = 345$ min., and $\gamma = 0.177$ while the latter storm at rain gage L-5, if expressed in the parametric equation (Eqs. 128 and 129), has the parameter values a = 54.62, b = 40.55, c = 1.156, $t_d = 60$ min., and $\gamma = 0.323$. For simplicity, the time-varying rainfall intensity for each storm was thus determined from the idealized hyetograph, Eqs. 128 and 129, rather than from the actual hyetograph, as characterized by a number of step pulses in unequal magnitude and time length or a series of such pulses.

Parleys site. The highway watershed at Parleys site is composed of two independent ones. As shown in Figure 24(b) and (c), one which drains storm water from a steep sideslope to a fixed channel-type gutter is referred to as Parleys site No. 1 and the other which drains storm water from a paved shoulder and a 4-lane roadway to a curb-type gutter (Figure 15), Parleys site No. 2. The drainage areas at both sites which are adjacent to each other are again not exactly rectangular in shape, but for convenience were considered as rectangles having the areas equal to 352 ft x 71 ft (including the top width of gutter) and 339 ft x 70 ft at sites No. 1 and No. 2, respectively.
Because the alignment of the roadway under investigation is curved, construction of "super elevation" apparently changes the transverse profile of the road surface throughout the whole length of the roadway. Since the present computer model did not take more than one transverse profile of the road surface into account, as mentioned previously, the average cross slope of the roadway including the paved shoulder was estimated from 4.28 percent at the upstream end of the gutter to 2.99 percent at the inlet side. The average of both values is 3.64 percent, which was used in the computation. The slope of the sideslope also varies from 42.5 percent at the upstream end of the gutter to 32.6 percent at the inlet side. The average slope of the sideslope is thus 37.5 percent which was again given as an input data for solution. The gutter slopes at the two sites were assumed to be both 2.52 percent.

Regarding the roughness sizes of the paved and grass surfaces, the magnitudes cited at Layton site were also assumed to be equally applicable here. Therefore, the value of the Darcy-Weisbach friction coefficient was estimated by using the same equations as used at Layton site.

The infiltration capacity was also simulated by means of the Kostiakov equation (Eq. 120) that has $f_{\infty} = 0.05$ in./hr, $\alpha = 0.5$, and S = 0.10 in. (Eq. 150) corresponding to CN = 99 of a soil-moisture-cover complex.

Three major storms were selected from the field data (Fletcher and Chen, 1975; Chen, 1975b) at Parleys site as rainfall input. Those selected are storms which occurred on October 4, 1972, July 19, 1973, and August 16, 1973. None of them appears to be large and long enough for the present method to solve the routed storm flow within tolerable accuracy. The actual hyetographs of all the storms were best fitted by using Eqs. 128 and 129 with the values of the storm parameters a, b, c, and γ having been determined from a least squares procedure (Chen, 1975b). It was found that for October 4, 1972 storm at rain gage P-6, a = 16.43, b = 2.15, c = 0.938, t_d = 286 min., and γ = 0.052; for July 19, 1973 storm at rain gage P-3, a = 62.39, b = 19.10, c = 1.027, t_d = 145 min., and γ = 0.216; and for August 16, 1973 storm at rain gage P-5, a = 27.57, b = 3.01, c = 1.019, t_d = 73 min., and γ = 0.096. The time-varying rainfall intensity for each storm was thus directly determined from Eqs. 128 and 129 with each of the preceding set of storm parameter values.

Computed hydrographs

Because the pattern in which a storm actually occurs and the field conditions under which storm water moves from the watershed divide to the drainage inlet are somehow different from what can be described by using a set of the mathematical equations, it is expected that there are some disagreements between the computed and measured hydrographs. It is generally understood that the more complicated the system under study (including both a rainfall event, or a series of such events, and an elementary watershed, or a combination of such elementary watersheds), the larger would be the disagreement between the computed and measured values. Although both highway cross-sections under investigation are small watersheds with drainage area less than 0.1 square mile, the complicacy of the storm patterns and field conditions such as strong local disturbance and car splash caused by passing vehicles (Fletcher and Chen, 1975) may greatly reduce the reliability of field data so collected and thus eventually destroy the ''mean-value'' approach on which the mathematical model is based. Consequently, if there are any disagreements between the measured and computed hydrographs, they may be attributed to one or a combination of the following:

(1) Accuracy and representativeness of the measured input and output data are questionable. As indicated above, traffic disturbance might significantly alter the measured values at various rain gages and dischargemeasuring flumes. For example, an inspection of the field data (Fletcher and Chen, 1975) reveals that none of the six recording rain gages installed on each site has measured exactly the same intensity as the rest of the gages even under the same storm. It is not clear whether this is caused by the nature of a thunder storm which is moving or the adverse aerodynamic effects of highway vehicles. The variety of the rainfall intensity, magnitudewise and timewise, makes it extremely difficult to select the one that represents the storm under study. Criterion of selection for those which were used as input is rather arbitrary. In general they were selected as closely as possible to the ones which might hopefully produce the corresponding measured hydrographs. Since the patterns of the measured hyetographs at the six rain gages are nearly identical [i.e., about equal γ values (Chen, 1975b)] for each major storm analyzed, simply the largest one among the six was chosen in order to maintain the better accuracy of computation. However, the more representative hyetograph can be obtained by first plotting isopluvial maps at different time intervals and then averaging the accumulated amount of rain over the area and time interval considered. Of course, the latter method of improvement on input data is only possible if a network of more than six point measurements is available.

An amount of water lost or "diverted" in splash and spray caused by moving traffic during a storm, especially at Parleys site No. 2, was substantial (Fletcher and Chen, 1975). This would in effect change significantly the shape of the measured hydrograph, magnitudewise and timewise, from the one which would have been otherwise. Because the present computer model does not take this effect into account, a large discrepancy between the measured and computed hydrographs from the roadway (Parleys site No. 2) alone is expected. Unfortunately there is no way to separate this effect from others and determine the significance (or insignificance) of its effect.

This inaccuracy in the measured hydrograph at Parleys site No. 2 was further aggravated by inherent instrumentation problems (Fletcher and Chen, 1975) which cannot be corrected without resorting to a new instrumentation system. Bad output is evidently reflected in the measured hydrograph, for example, of the August 16, 1973 storm, which, due to some unknown causes, could not be simulated by using the present model. Therefore, the comparison of the measured and computed hydrographs for storms from the roadway cannot be made herein.

(2) The smaller the rainfall intensity of a storm under study, the worse is the accuracy of the computer results. As shown in Figure 18, the present model underestimates very badly the computed discharge of the low flow. It is noted that most of the major storms under investigation, except for one, merely amount to the highest of 3 inches per hour or less for a period of 2 to 3 minutes. Such small storms cannot produce the surface flow which is large and deep enough to be computed reliably with the method of characteristics due mainly to the difficulty in the expression of the Darcy-Weisbach friction coefficient, f.

Another possible source of large computational errors might result from the computation of the moving internal boundary where overland flow meets with gutter flow, aside from the shock-wave computation that might occasionally give trouble, too. Since small errors induced in the numerical computation may travel upstream and downstream depending upon the state of flow and grow unboundedly with hydrodynamic instability, the computation of the shock waves, except at the wavefront of a moving storm, was not performed in the present study by using a few control statements although it is included in the computer program. Details of such control statements are given in the appendix.

For simplicity, the actual hyetograph was best fitted by using a least squares procedure to Eqs. 128 and 129 (Chen, 1975b) with storm parameters a, b, c, t_d, and γ . This is a good approximation which may be valid for practical purposes in view of varieties in measurements at different gages, but may not be accurate enough for some storms which have more than one peak. Because most of the thunder storms which we are interested in studying are likely single-peaked, this type of the simplification of the storm pattern is justified and maintained throughout this study.

Another simplification in the mathematical modeling is related with the evaluation of infiltration capacity at both sites. The values of the infiltration parameters such as f_{∞} , α , and S in Eqs. 120 and 150 were determined on the basis of the October 4, 1972 storm (Fletcher and Chen, 1975). It is possible that the parameter values for other storms are quite different from those determined from the October 4, 1972 storm because of the differences in antecedent moisture condition (Chen, 1975c). This judgment in accounting for the differences is seemingly confirmed by comparing the measured and computed hydrographs for the selected storms, each of which is briefly discussed below.

The October 4, 1972 storm at Parleys site No. 1. A comparison of the measured rainfall intensity and runoff rate, as shown in Figure 25, reveals that a large amount of precipitation was apparently lost in the initial abstraction, I_a . The initial abstraction that consists of interception and subsurface and surface storage (including initial detention and depression storage) before runoff begins cannot be theoretically determined with the present knowledge in hydrology. The present computer model

Figure 25. Measured October 4, 1972 storm and runoff from highway sideslope at Parleys site No. 1.

does not contain the computation of I_a , but assumes its value as an input data. Various values of I_a were thus input under the ''simulated'' storm (broken line in Figure 25) and the corresponding hydrographs computed for the purpose of comparison, as shown in Figure 26. The agreement between the measured and computed hydrographs, despite apparent differences in the assumed I_a value, is strikingly good for the following major reasons. (1) The storm pattern is single-peaked and Eqs. 128 and 129 are quite accurate for the representation of the actual hyetograph. (2) The input infiltration capacity was determined based on this storm.

In connection with the development of the parametric infiltration models (Chen, 1975c) using the Soil Conservation Service (SCS) approach, the writer has formulated a theoretical relationship between the initial abstraction, I_a , and the soil potential infiltration, S, (Appendix 3) as

which has the ratio of I_a to S equal to 0.25 instead of 0.20 assumed by SCS. Equation 151 was then used to correct any possible errors that might be induced by the inaccuracy in the assumed expression of infiltration capacity. Because the parametric models of the infiltration capacity at both sites were developed based on the October 4, 1972 storm, no further improvement on the computed hydrograph thanks to Eq. 151 (Figure 26) was appreciated, however. It is hoped that use of Eq. 151 will improve the computed hydrographs for the other storms.

For an assumed I_a value, it is necessary to determine the time when runoff starts. Thus, rainfall mass curve, which can be constructed by integrating Eqs. 128 and 129 over time (i.e., equivalent to multiplying the right-hand side of Eqs. 139 and 140 by time, t), may be used to compute the time required for rain to accumulate the assumed I_a value. The Newton-Raphson method may be used for this computation; however, the method failed sometimes because of the peculiar nature of Eqs. 128 and 129, or integrated forms thereof, Eqs. 139 and 140 at the peak. Instead, the Interval Halving or Bisection Method (Fenves, 1967) was used.

The July 19, 1973 storm at Parleys site No. 1. The role that the initial abstraction, I_a , plays in the computation of the inlet hydrograph is very important. The sensitivity of the computed hydrograph to the assumed magnitude of I_a is reflected not only on the time when runoff starts, but also on the shape of the hydrograph which responds subsequently to the storm input as depicted in Figure 27. The various values of I_a were tested and the corresponding hydrographs computed, as shown in Figure 28, for comparison. It can readily be seen from the comparison of the computed hydrographs that the one with $I_a = 3/8$ in. and S = 1.50 in. (from Eq. 151) best fit the measured hydrograph, timewise and magnitudewise, except for a small span of time around the peak of the hydrograph where the runoff discharge is overestimated. In view of the fact that a small increase in the assumed value of I_a , say by 1/8 in., to a total of 1/2 in. (See Figure 28) has resulted in a substantial reduction in the peak as well

Figure 28. Comparison of computed and measured hydrographs for July 19, 1973 storm at Parleys site No. 1 (sideslope).

as a time shift or delay in response without changing the shape of the hydrograph, a further improvement on the computed hydrograph due to I_a seems still possible.

The results from these computer experiments indicate that the quantity I_a appears to be the most important, single factor to be considered in the successful modeling of the surface runoff from the practical point of view. Unfortunately it happens to be the most difficult, unknown quantity to determine from the theoretical point of view. Since the proposed parametric infiltration model (Eqs. 120 and 150) can be expressed in terms of the soil potential infiltration, S (Chen, 1975c), the value of I_a can be determined either from Eq. 151 by using the known S value or from

in terms of the known runoff curve number, CN, for a soil-cover-moisture complex in question. For convenience in engineering application, the initial abstraction values in inches for highway soil-cover-moisture complexes are computed from Eq. 152 for CN values given by the writer in the other report (Table 8 of Chen, 1975c) and tabulated in Table 2. Should the rating table based on the catena concept (Chiang, 1971) be used as the refined SCS classification for hydrologic soil groups, Ia values for groups + B, + C, and + D can be interpolated accordingly from Table 2. Since the I_a value so determined at Parleys site No. 1 varies from almost zero (for the October 4, 1972 storm) to a little bit more than 0.375 in. (for the July 19, 1973 storm) in the hydrologic soil group D (Chen, 1975c), the corresponding antecedent moisture conditions (AMC) for both storms are evidently different, viz., from Table 2 varying from AMC III for the former storm to AMC I for the latter storm on the highway sideslope with the same soil and plant cover at Parleys site. The variation of the I_a value demonstrates in part the applicability and usefulness of Table 2 for engineering practice.

Antecedent Moisture	Hydrologic Soil Group							
Condition - (AMC)	А	В	C	D				
AMC I	1.288	0.925	0.625	0.441				
AMC II	0.549	0.374	0.247	0.160				
AMC III	0.217	0.132	0.077	0.051				

Table 2. Estimated initial abstraction (I_a) in inches for highway soilcover-moisture complexes.

The September 5, 1972 storm at Layton site. The hydrograph at Layton site can be thought of as a combination of one from the sideslope at Parleys site No. 1 and the other from the roadway at Parleys site No. 2. Unfortunately for those storms examined, none of the measured hydrographs at Parleys site No. 2 appears to be reliable enough to be used in the validation of the computer model. However, the validation of the computer model including both parts (i.e., one from the sideslope and the other from the roadway) may be inferred to imply that if either part of the two is valid, the other part must also be true. Therefore, the hydrographs in response to the September 5, 1972 storm, as shown in Figure 29, were computed for various values of I_a and plotted in Figure 30 for comparison.

An inspection of Figure 30 reveals that the computed hydrograph for $I_a = 5/16$ in. (0.3125 in.) appears to best fit the measured hydrograph timewise. The peak of the computed hydrograph is much larger than that of the measured hydrograph, but it is reasoned more likely in the light of the relative magnitude of the measured rainfall intensity and runoff rate as depicted in Figure 29. In other words, the measured runoff rate for this storm appears to be too small at Layton site in comparison with those obtained from Parleys site No. 1 (see Figures 25 and 27), despite the fact that approximately half of the inlet discharge at Layton site is contributed by runoff coming from the roadway. However, the opposite tendency in the measured hydrograph is found on the other storm investigated. This seemingly indicates a data-collection problem at flume LW-1.

The May 26, 1973 storm at Layton site. For the storm, as shown in Figure 31, the measured runoff rate at flume LW-1 looks larger than that for the September 5, 1972 storm. Two I_a values were assumed and the corresponding hydrographs computed, as shown in Figure 32, for comparison. None of them fits well the measured hydrograph. Disagreements between the measured and computed hydrographs may be attributed to one or a combination of the sources of errors which were already given earlier.

The computer model so developed is of course not perfect as many difficulties are yet to be solved, but it has been demonstrated that it is accurate enough for practical purposes. In the following section, the model will thus be used to study runoff from typical urban highway cross-sections under idealized stationary and moving storms, and thereby to explore the feasiblity of developing standardized dimensionless inlet hydrographs for design storms having any desired recurrence intervals.

Figure 29. Measured September 5, 1972 storm and runoff from combined roadway and sideslope at Layton site.

Figure 30.

30. Comparison of computed and measured hydrographs for September 5, 1972 storm at Layton site (combined roadway and sideslope).

Figure 31. Measured May 26, 1973 storm and runoff from combined roadway and sideslope at Layton site.

Figure 32. Comparison of computed and measured hydrographs for May 26, 1973 storm at Layton site (combined roadway and sideslope).

COMPUTATION OF RUNOFF FROM TYPICAL

URBAN HIGHWAY CROSS-SECTIONS

Accuracy of the computer model has only been tested for the limited cases in which field data are available. From the results obtained from such limited tests, it has been shown that the model can simulate, within practical tolerance limits, the actual hydrograph, should appropriate or average hydrometeorologic and physiographic data for the subject watershed be given. There seems no way to know, however, whether the model can also accurately compute the inlet hydrograph for other cases in which field data are not available, without resorting to some kind of computer experiments. Time did not permit computer experiments to be performed on all possible cases. Those which were tested in this study are some idealized, hypothetical cases which are nevertheless believed to be essential to the subsequent development of non-computerized, dimensionless inlet hydrographs for highway engineers. Suffice it to say that while continuing efforts will be made on the collection of valid field data as well as the modifications and improvements of the present computer model, the appraisal of the results obtained from the exploratory computer experiments must also be in order. It is hoped that sensitivity analysis made by varying some significant parameters through the computer model will lead to the ultimate generation of design parameters for computing desired inlet hydrographs.

Four typical highway cross-sections provided by the Federal Highway Administration, as shown in Figure 33, approximately represent those found in the major urban and suburban interstate highway system. Among them, type 1a (Figure 33a) is similar to the one at Layton site (Figure 24a) which was already examined. Also examined extensively is the one at Parleys site No. 1 (Figure 24b) which is only a "sideslope" part of type 1a or type 2b (Figure 33c). Parleys site No. 2 (Figure 24c) consisting of a curb-type gutter could not be examined due partly to invalid field data and partly to difficulty in making the computer model operational under such small storms, as mentioned previously. It appears that the latter site corresponds to a "roadway" part of type 1b (Figure 33b) without paved shoulder or type 2 (Figure 33c). Since this part of the highway cross-section is the most common in urban highway traffic that requires more due attention as far as the inlet design is concerned, runoff from the roadway with or without paved shoulder under hypothetical heavy storms must be thoroughly investigated. Note that the present approach of computing runoff from the roadway with paved shoulder is technically treated the same as that from the roadway without paved shoulder. Therefore, for simplicity, only runoff from the roadway without paved shoulder is studied herein.

Runoff from Roadway with Curb-Type Gutter

The computer model was used to study the effects of the different parameters on the inlet hydrograph. The parameters studied are: gutter slope, gutter length, cross slope of the roadway, roadway width, rainfall intensity, and direction of the moving rainstorm. Ten different computer runs (Table 3), were conducted and the effects of the aforementioned parameters on the inlet hydrograph were determined. The common hydrometeorologic and physiographic data input in the computer model are: $v = 1.21 \times 10^{-5} \text{ ft}^2/\text{sec}, \Phi = 0, \Lambda = 28.5 \text{ fps}, \delta = 0.1575 \text{ in., } k = 0.0034$ ft for paved surface, $T_0 = 1$ ft, and i = 0 in./hr.

The gutter flow is divided into 4 sections with distance interval Δ s taken as large as 100 ft for all runs except run 4 which has Δ s = 250 ft. The horizontal width of each lane, 12 ft, (Figure 6) is divided into three sections with the horizontal distance interval, Δ x, for overland flow equal to 4 ft so that all the runs except for run 5 have eight grid points on the roadway.

The selection of the time interval, Δt , is programmed in the same way as mentioned previously. In other words, Δt is chosen between the values obtained from Eqs. 48 and 149, whichever is smaller.

In Table 3, the values of input parameters for run 1 are arbitrarily selected as "standard" ones and subsequently changed to other possible values, one at a time, for each of the other runs. For example, the gutter slope in run 1 is changed from 5 percent to 0.5 percent (i.e., underlined in Table 3) for run 2 while the remaining parameters in run 2 are all kept the same values as those used in run 1, and so forth. Because there are too many factors which may affect the inlet hydrograph including those which are currently under consideration, the sensitivity of its response (i.e., hydrograph) to the variation of any input parameter value can only be studied in such a tedious way. All the computer runs were executed on UNIVAC 1108 and analyzed. There is a tremendous amount of computer output at different time levels for each run, including velocity and discharge distributions, flow profiles, Reynolds and Froude number distributions, friction coefficient and slope distributions, and so forth (see, e.g., sample output in Appendix 4). These output data are helpful to the study of the mechanism of water movement on the roadway under a stationary or moving rainstorm. One may be interested in plotting the building-up or receding flow profiles on the roadway at various sections and in the gutter at different time levels. Some of these were already conducted by Chu (1973) using the same computer model, but in a rather limited version of capability, developed in the early stage of this research. Since our main thrust of this research is to develop the inlet hydrograph, analysis of many flow characteristics other than hydrograph, are not further pursued herein.

Run	Gutter slope (%)	Cross slope of roadway (max, or min.)*	Gutter length (ft)	Roadway width (no. of lanes)	Rainfall intensity (in/hr)	Storm front velocity** (mi/hr)	Moving storm direction (in parallel with)		
1	5	max.	400	2	20	œ			
2	0.5	max.	400	2	20	ω			
3	5	min.	400	2	20	œ			
4	5	max.	1,000	2	20	co			
5a	5	max.	400	1	20	ω			
5b	5	max.	400	3	20	∞ .	_ ·		
5c	5	max.	400	4	20	ω	-		
6	5	max.	400	2	5	ω	-		
7	5	max.	400	2	20	+ 0.136	overland flow		
8	5	max.	400	2	20	- 0.136	overland flow		
9	5	max.	400	2	20	+ 0.682	gutter flow		
.0	5	max.	400	2	20	- 0.682	gutter flow		

Table 3. List of the values of different parameters used in computer experiments.

*The values of the coordinates used in the maximum and minimum cross slopes of the roadway are shown in Figure 6.

**Infinity sign "∞" means a stationary rainfall, positive sign means in the direction of flow, and negative sign means in the opposite direction of flow.

The dimensionless inlet hydrograph, Q_* (= Q/A_0V_0) versus t_* (= tV_0/L_0) for all runs except for run 9 (which failed for unknown causes) are plotted in Figure 34 for comparison. For convenience, rainfall for run 1 through run 6 was made to stop arbitrarily at $t_* = 5$, which thus gives all runs various time durations of rainfall, t_d , in minutes because of the differences in the normalizing quantities A_0 , V_0 , and L_0 used in each run (see Table 4). Obviously, even by t_d , some runs have not reached the theoretical equilibrium state yet, aside from the possible numerical errors involved in the computation.

Accuracy of the computed hydrograph

To examine the accuracy of the computation without resorting to field data, the theoretical point in the hydrograph has always been checked. This is the theoretical equilibrium state at which runoff rate in a dimensionless form, Q*, must be equal to unity under a stationary, prolonged uniform rain. Any deviation from this theoretical value for the rain lasting more than the time of concentration may be attributed either to the flow characteristics of runoff in question or to computational errors, or both. An inspection of run 1 through run 6 in Figure 34 reveals that only run 3 which has the minimum cross slope of the roadway (Table 3) has reached the theoretical equilibrium point. A further examination of the computer output for all runs reveals that run 3 is the only run with the major portion of the runoff on the roadway fallen in the subcritical flow range. This finding confirms our earlier statement in connection with the accuracy of the overland-flow submodel that the adverse effect of gravity on the computational stability and convergency worsens with the increase in the Froude number.

The time durations of rainfall for run 5a and run 1 which have only one-lane and two-lane traffic, respectively, should be long enough for runoff to reach the theoretical equilibrium, should there be no computational errors. Apparently there are numerical errors, about 3 to 4 percent, in the computation of run 1 and run 5a. Other runs such as run 2 which has a smaller gutter slope, run 4 which has a longer gutter reach to the inlet, and run 5b and run 5c which have more traffic lanes, all in comparison with run 1, do not quite seemingly reach the theoretical equilibrium discharge by the time rain stops (i.e., $t_{\star} = 5$ or dimensional time thereof for each run as listed in Table 4). From the errors involved in the computation of run 1 and run 5a, it is estimated that the computational errors in those runs should not exceed more than 3 to 4 percent.

The difficulty in computing runoff resulting from a light storm with the rainfall intensity as small as 5 in./hr or less manifests itself in an unstable hydrograph such as computed for run 6, as shown in Figure 34. One of the most difficult parts in the runoff computation using the present model is the computation of the internal boundary where overland flow meets with gutter flow. Since the internal boundary moves from time to time, a slight error in the computation of the location of the internal

Figure 34. Computed dimensionless inlet hydrographs for runoff from roadway with curb-type gutter under stationary and moving rainstorms.

	Run											
	1	2	3	4	5a	5b	5c	6	7	8	9	10
A _o (ft ²)	0.362	0.734	0.362	0.634	0.253	0.453	0.534	0.155	0.362	0.362	-	0.362
V _o (ft/sec)	13.81	6.82	13.81	19.68	10.98	15.92	17.66	8.02	13.81	13.81	-	13.81
[L _o (ft)	400	400	400	1000	400	400	400	400	400	400	-	400
^t d (min.)	2.42	4.89	2.42	4.24	3.04	2.09	1.89	4.16	-	-	-	

Table 4. Normalizing quantities A_0 , V_0 , and L_0 and time duration of rainfall, t_d , used in the computation and construction of dimensionless hydrographs for all runs shown in Figure 34.

boundary would also propagate upstream and downstream in the gutter, resulting in the subsequent computations with unrealistically too high or too low gutter flow depth and velocity. The small intensity is probably one among many reasons, runoff at Parleys site No. 2 could not be computed, as mentioned previously. No attempt was made in this study to refine or improve the computation of the internal boundary under a light rain, but it must be made in the future if the capability and applicability of the present model will be broadened.

The computed hydrograph for run 7 represents the response of the roadway to a uniform storm with a storm front moving at velocity W = 0.136 miles per hour in the direction of overland flow. Theoretically speaking, when the equilibrium state for run 7 is reached, it must have the same theoretical equilibrium discharge as run 1 because both runs have the identical physiographical and hydrometeorological inputs at the equilibrium state. Therefore, run 7 has approximately the same accuracy of computation as run 1, as shown in Figure 34. The computed hydrograph for run 8, which has a storm front moving in the opposite direction of overland flow, starts earlier, but has a less steep slope than that for run 7. Finally, at the equilibrium state, run 8 also has approximately the same accuracy of computation as run 1 and run 7, as shown in Figure 34.

For run 9, the writer has failed to get the desired solution, as mentioned previously, so that it cannot be shown in Figure 34 for comparison. While a continuing effort is still made to solve it at the time of writing this report, it is worth pointing out here that the failure may be caused either by a large distance interval (i.e., 100 ft) adopted in the computation or by a similar problem encountered in the computation of the internal boundary at the wave front, or both. A large distance interval causing trouble in the computation is also reflected in the computed hydrograph for run 10. Each of the hydrograph humps shown in Figure 34 for run 10 represents an addition of a grid point in the computation in response to the current position of the storm front. There is a total of five humps corresponding to the five grid points taken in the computation. The humps can be eliminated or smoothed out either by adopting more grid points or by refining the numerical scheme at the wave front. The latter method of improvement seems to be more practical than the former in terms of the less computer time required in the computation. At the equilibrium state, run 10 also reaches the same runoff discharge as run 1.

Development of dimensionless inlet hydrograph

For run 1 through run 6, despite the significant difference in the values of the parameters tested, their normalized inlet hydrographs look very similar to each other except for apparent time lag among some of them. If the normalizing (or reference) quantities can be chosen in such a way that they can represent more the overall flow characteristics, then these normalized inlet hydrographs can be collapsed much closer than what is shown in Figure 34. For instance, the reference length can be chosen to be equal to the summation of the gutter flow length and overland flow length. Although Chu (1973) has replotted the normalized hydrographs for run 1 through run 6 using the latter reference length, small spreads among the runs do not seem to warrant much improvement of the newly-plotted hydrographs over those shown in Figure 34. In the future, if more data on the computed hydrographs generated from a variety of ranges of the values of the input parameters such as those related to design storms (Chen, 1975b), soil infiltration capacity (Chen, 1975c), and initial abstraction (Eq. 151) are available, the construction of dimensionless design hydrographs, similar to Figure 34, for the four typical urban highway crosssections (Figure 33) seems possible.

Regarding the inlet hydrograph due to a moving rainstorm, the construction of such a dimensionless hydrograph would be more complicated than that presented herein. It is conceivable that if the storm front in overland flow direction outraces the wave front, the inlet hydrograph for run 7 must differ with that for run 1 by merely a time lag which accounts for the time needed for the storm front to move from the upstream end of overland flow to the downstream end of overland flow. On the other hand, if the wave front outraces the storm front, the situation will be somewhat different from what was just described above, of course, depending upon the speed of the storm front. As shown in Figure 34, the effect of both direction and magnitude of the moving storm on the inlet hydrograph is quite significant. As a matter of fact, the inlet hydrograph for run 1 actually represents the one for the storm front velocity, W, approaching infinity (Table 3) and the abscissa of the hydrograph, where $Q_{\star} = 0$, represents the inlet hydrograph for W = 0. Hence, the area enclosed by the abscissa and the inlet hydrograph for run 1 is the domain of the inlet hydrograph in which the moving rainstorm has a storm front velocity varying from zero to infinity. Therefore, in addition to the normalized quantities, unless some kind of a moving and deforming time coordinate system is adopted to adjust for such a wide variety of Q* versus t* areas, the development of a unified dimensionless hydrograph for a moving storm seems unlikely.

SUMMARY AND CONCLUSIONS

The mathematical model which consists of a set of flow equations, initial conditions, and boundary conditions, is developed for a combined overland and gutter flow. Based on the laws of the conservation of mass and momentum, the one-dimensional spatially-varied unsteady flow equations are formulated to simulate such flow and then solved numerically on a digital computer subject to prescribed initial and boundary conditions. Several assumptions and approximations were made in the formulation of the mathematical model. The major ones made are as follows:

1. In the derivation of the momentum equation, Eq. 17c, two momentum correction factors, β and $\beta_{\rm L}$, are introduced to account for the velocity distributions of the main flow and the lateral inflow, respectively. The actual values of β and $\beta_{\rm L}$ cannot be determined. In wide open channels, the momentum correction factor β has a theoretical value of 1.2 for laminar flow and 1 + 0.78125f for turbulent flow, where f is the Darcy-Weisbach friction coefficient. For simplicity, the values of the momentum correction factors used in the present study are assumed to be unity. The computer solutions for several different rainstorms indicate that within the range of different parameter values used, no significant differences occur for β 's ranging from 1.0 to 1.2 (for laminar flow) or to 1 + 0.78125f(for turbulent flow).

2. The value of the Darcy-Weisbach friction coefficient, f, is difficult to determine, but can be approximated by using Eqs. 19, 20, and 21. For turbulent flow on the rough surface, Eq. 19 can be used to evaluate the f value. However, if the depth of flow is almost of the same order of magnitude as the roughness size or less, Eq. 19 in terms of the logarithm of the relative roughness (R/k) may not be valid. Whether or not Eq. 19 is valid under such small flow depth must be checked by experiment.

For laminar flow, Eq. 21 is used to evaluate the f value. To avoid difficulty in the computation, the flow is treated as laminar when the hydraulic radius, R, is less than a certain value, denoted by εk . The value of ε is unknown, but presently assumed as unity. The value of C in Eq. 21 is evaluated in terms of channel slope, S, as expressed by Eq. 82. The coefficient and exponent in Eq. 82 were experimentally determined for natural turf surfaces.

The results obtained from the computer experiments indicate that the flow often falls in the transition region (i.e., partially laminar and partially turbulent), a region in which none of Eqs. 19, 20, and 21 should apply. This failure in the accurate evaluation of the friction coefficient may sometimes result in computational instability, as mentioned previously. Although Eqs. 19, 20, and 21 were used throughout the present analysis, a more accurate formula should be formulated to evaluate the friction coefficient in the transition region.

The flow equations so formulated are expressed in the form of a set of quasi-linear partial differential equations. This set of the equations was solved numerically by using an explicit finite-difference scheme with specified rectangular grid intervals based on the method of characteristics. A special technique by use of a pair of shock equations and characteristic equations was developed for tracing a bore or a train of such bores.

For solving the conjugate depths and velocities at the discontinuity, the internal boundary condition, Eq. 100, must be solved simultaneously with both C^+ - and C^- - characteristic equations on the front side of the discontinuity and only one, either C^+ - or C^- - characteristic equation, on the back side of the discontinuity. With the help of Eq. 109, this numerical technique was applied in tracing the wavefront moving on a dry surface due to a moving rainstorm.

The mathematical model developed in this study was programmed in FORTRAN language and executed on the UNIVAC 1108 computer. The computer model, including a main program, 38 subroutine subprograms, and 2 function subprograms, has been verified to be accurate enough for simulating overland flow as well as a combined overland and gutter flow under a stationary or moving rainstorm. Although there are several limitations in the computer model, the model is generalized so that it can be applied to any runoff routing problem on the highway cross-section including roadway, shoulder, sideslope, gutter, etc. The limitations such as the uniform cross slope of the roadway and the direction of a moving rainstorm restricted in parallel to or perpendicular to the direction of the gutter flow, can be removed, if desired, in a future study.

The proposed model computes not only the flow profiles, velocity distributions, discharge distributions, top width distributions, Froude number distributions, Reynolds number distributions, and friction slope (or coefficient) distributions, but also the locations of moving critical sections and bores, if any.

In the initial stage of the hydrograph when the velocity and hydraulic depth are small, the value of the time interval, Δt , is chosen from Eq. 48 or 149, whichever is smaller. Equation 149 was formulated by experience and is believed to be suitable for this type of the initialvalue problem within the range of data input. Nevertheless, the time interval selected for circumventing the computational instability, especially in the initial stage of the hydrograph, needs further investigation.

The accuracy of the mathematical model was tested by comparing the computed hydrographs with field data under various physiographical and hydrometeorological conditions. For lack of available field data on runoff from the roadway with curb-type gutter, the model was also tested under some hypothetical storm and drainage conditions. It was found that the initial abstraction played an important role in the simulation of actual inlet hydrographs. The accuracy of the model is believed to be good enough for most practical purposes.

For improving the accuracy of the present mathematical model, the assumptions and approximations made in the evaluation of the friction coefficient, in the formulations of the initial conditions and internal boundary conditions, and in the arrangement of the numerical computational procedures must be refined or removed. Of course, some assumptions and approximations used require an experimental verification.

The computer solutions indicate that under the condition of uniform stationary rainfall, the effects of the parameters, such as the gutter slope, gutter length, cross slope of the roadway, roadway width, and rainfall intensity on the <u>normalized</u> inlet hydrograph are not significant, as shown in Figure 34. Therefore, if the reference quantities used to normalize the discharge and time are adequate, a unified dimensionless inlet hydrograph under a uniform stationary rainfall condition looks very promising. By the same token, if more data on the computed hydrographs generated from a variety of ranges of the values of the input parameters such as those related to design storms, soil infiltration capacity, initial abstraction are available in the future, the development of dimensionless design hydrographs, similar to Figure 34, for typical urban highway crosssections seems possible.

The effects of the velocity of a moving rainstorm on the normalized inlet hydrograph are significant. The development of a unified dimensionless hydrograph for a moving storm does not look promising. However, because the range of influence of the velocity of the moving storm on the normalized hydrograph is clear, one may be able to obtain the desired hydrograph by interpolation or extrapolation.

RECOMMENDATIONS

The principal future work recommended for the further investigations of computer modeling and analysis of runoff from typical urban highway cross-sections is as follows:

1. The computation of low flows under light storms is very difficult using the present method of solution. It sometimes failed due partly to inaccuracy in the evaluation of the friction coefficient and partly to computational instability induced by the internal boundary computation. For lack of a better method available in the computation of such low flows, it has been simply assumed that the flows are laminar and the uniform flow equation (Eq. 83) applied. However, it has been found during the model validation tests that such an assumption may cause large errors in the computation. An effort must be made on the improvement of the computation for such low flows.

2. The unstable results shown in the computation of runoff under a storm moving in the opposite direction of gutter flow can be overcome by refining the current numerical scheme in use at the storm front. This refinement may also help solve the difficulty experienced in the computation of runoff under a storm moving in the same direction as gutter flow.

3. It has been shown from the model validation tests that the initial abstraction is probably the most important, single factor which may greatly affect the computation of the entire inlet hydrograph. Unfortunately it happens to be the most difficult, unknown quantity to deal with in the mathematical modeling. For the future modeling of the surface runoff, more attention should be paid on the evaluation of the initial abstraction.

4. Efforts must be made on the development of a unified dimensionless inlet hydrograph or a family of such hydrographs for typical urban highway cross-sections. This can be readily done by analyzing the computed hydrographs generated from the present or modified computer model by inputing a variety of ranges of the values of the parameters such as those related to design storms, soil infiltration capacity, initial abstraction, etc.

REFERENCES

- Amein, M. 1966. Streamflow routing on computer by characteristics. Water Resources Research 2(1):123-130.
- American Association of State Highway Officials. 1965. A policy on geometric design of rural highways.
- American Association of State Highway Officials. 1973. A policy on geometric design of urban highways and arterial streets, 323-334.
- Amorocho, J., and G. T. Orlob. 1961. Nonlinear analysis of hydrologic systems, Water Resources Center Contribution, University of California, Berkeley, 40:74-77.
- Amorocho, J., and T. S. Strelkoff. 1965. Hydraulic transients in the California aqueduct. Report No. 2, Water Science and Engineering Paper 1008, Department of Water Science and Engineering, University of California at Davis.
- Anderson, J. J. 1970. Real-time computer control of urban runoff. Journal of the Hydraulics Division, American Society of Civil Engineers 96(HY1):153-164.
- Baltzer, R. A., and C. Lai. 1968. Computer simulation of unsteady flows in waterways. Journal of the Hydraulics Division, American Society of Civil Engineers 94(HY4):1083-1117.
- Becker, L., and W. W-G. Yeh. 1972a. Identification of parameters in unsteady open channel flows. Water Resources Research 8(4):956-965.
- Becker, L., and W. W-G. Yeh. 1972b. Optimal identification of resistance parameters in natural channels. International Symposium on Systems Engineering and Analysis, Purdue University, West Lafayette, Ind., 2:36-40.
- Becker, L., and W. W-G. Yeh. 1973. Identification of multiple reach channel parameters. Water Resources Research 9(2):326-335.
- Bernard, M. 1938. A modified rational method of estimating flood flows. Low Dams-A Manual of Design for Small Water Storage Projects, National Research Committee, Washington, D.C.
- Burman, R. D. 1969. Plot runoff using kinematic wave theory and parameter optimization. Ph.D. dissertation, Cornell University, Ithaca, N.Y.

- Chen, C. L. 1975a. Urban storm runoff inlet hydrograph study. Vol. 2. Laboratory studies of the resistance coefficient for sheet flows over natural turf surfaces. Utah Water Research Laboratory Report PRWG106-2, Utah State University, Logan, Utah.
- Chen, C. L. 1975b. Urban storm runoff inlet hydrograph study. Vol. 4. Synthetic storms for design of urban highway drainage facilities. Utah Water Research Laboratory Report PRWG106-4, Utah State University, Logan, Utah.
- Chen, C. L. 1975c. Urban storm runoff inlet hydrograph study. Vol 5. Soil-cover-moisture complex analysis of parametric infiltration models for highway sideslopes. Utah Water Research Laboratory Report PRWG106-5, Utah State University, Logan, Utah.
- Chen C. L., and V. T. Chow. 1968. Hydrodynamics of mathematically simulated surface runoff. Civil Engineering Studies, Hydraulic Engineering Series No. 18, University of Illinois, Urbana, Illinois. 132 p.
- Chen, C. L., and V. T. Chow. 1971. Formulation of mathematical watershed-flow model. Journal of the Engineering Mechanics Division, American Society of Civil Engineers 97(EM3):809-828.
- Chen, C. L., and M. S. Chu. 1973. Modeling river and estuary unsteady flow systems. International Symposium on River Mechanics, Bangkok, Thailand, 3:303-314.
- Chen, C. W., and R. P. Shubinski. 1971. Computer simulation of urban storm water runoff. Journal of the Hydraulics Division, American Society of Civil Engineers 97(HY2):289-301.
- Chiang, S. L. 1971. A runoff potential rating table for soils. J. Hydrology 13:54-62.
- Chien, J. S., and K. K. Saigal. 1974. Urban runoff by linearized subhydrographic method. Journal of the Hydraulics Division, American Society of Civil Engineers 100(HY8):1141-1157.
- Chow, V. T. 1959. Open-channel hydraulics. McGraw-Hill Book Co., New York, New York, 217-353.
- Chow, V. T., and A. Ben-Zvi. 1973. Hydrodynamic modeling of twodimensional watershed flow. Journal of the Hydraulics Division, American Society of Civil Engineers 99(HY11):2023-2040.
- Chu, M. S. 1973. Hydrodynamics of runoff from road surfaces under moving rainstorms. Ph.D. dissertation, Utah State University, Logan, Utah. 235 p.

- Corps of Engineers, Los Angeles District. 1949-51. Airfield drainage investigation, Santa Monica, California. Vol. 1. Basic hydrographs for surface of 1/2% slope; Vol. 2. Basic hydrographs for surface of 1% slope; Vol. 3. Basic hydrographs for surface of 2% slope.
- Courant, R., and K. O. Friedrichs. 1948. Supersonic flow and shock waves. Interscience Publishers, Inc., New York, New York.
- Courant, R., and D. Hilbert. 1962. Methods of mathematical physics, Vol. II. Interscience Publishers, Inc., New York, New York.
- Courant, R., E. Isaacson, and M. Rees. 1952. On the solution of nonlinear hyperbolic differential equations by finite differences. Communications on Pure and Applied Mathematics 5:243-355.
- Dressler, R. F. 1949. Mathematical solution of the problem of roll waves in inclined open channels. Communications on Pure and Applied Mechanics 2:149-194.
- Dronkers, J. J. 1964. Tidal computations in rivers and coastal waters. North Holland Publishing Co., Amsterdam, The Netherlands.
- Dronkers, J. J. 1969. Tidal computations for rivers, coastal areas, and seas. Journal of the Hydraulics Division, American Society of Civil Engineers 95(HY1):29-77.
- Eagleson, P. S. 1962. Unit hydrograph characteristics for sewered areas. Journal of the Hydraulics Division, American Society of Civil Engineers 88(HY2):1-25.
- Ellis, J. 1970. Unsteady flow in channel of variable cross-section. Journal of the Hydraulics Division, American Society of Civil Engineers 96(HY10):1927-1945.
- Faure, J., and N. Nahas. 1961. Etude numerique et experimentale d'intumescences a forte courbure du front. La Houille Blanche 16(5):576-587.
- Fenves, S. J. 1967. Computer methods in civil engineering. Prentice-Hall, Inc., Englewood Cliffs, N. J., 105-106.
- Fletcher, A. G., and W. S. Hamilton. 1967. Flood routing in an irregular channel. Journal of the Engineering Mechanics Division, American Society of Civil Engineers 93(EM3):45-62.
- Fletcher, J. E., and C. L. Chen. 1975. Urban storm runoff inlet hydrograph study. Vol. 3. Hydrologic data for two urban highway watersheds in the Salt Lake City area, Utah. Utah Water Research Laboratory Report PRWG106-3, Utah State University, Logan, Utah.

- Freeman, J. C., and B. Le Meháuté. 1967. Wave breakers on a beach and surge on a dry bed. Journal of the Hydraulics Division, American Society of Civil Engineers 90(HY2):187-216.
- Garabedian, P. R. 1964. Partial differential equations. John Wiley and Sons, Inc., New York, New York.
- Gregory, R. L., and C. E. Arnold. 1932. Rumoff-rational runoff formulas. Transactions, American Society of Civil Engineers 96:1038-1177.
- Gunaratnam, D. J., and F. E. Perkins. 1970. Numerical solution of unsteady flows in open channels. Hydrodynamic Laboratory Report, No. 127, Department of Civil Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts.
- Hawkins, R. H. 1973. Improved prediction of storm runoff in mountain watersheds. Journal of the Irrigation and Drainage Division, American Society of Civil Engineers 99(IR4):519-523.
- Heeps, D. P., and R. G. Mein. 1974. Independent comparison of three urban runoff models. Journal of the Hydraulics Division, American Society of Civil Engineers 100(HY7):995-1009.
- Henderson, F. M. 1966. Open channel flow. The Macmillan Company, New York. 522 p.
- Hicks, W. I. 1944. A method of computing urban runoff. Transactions, American Society of Civil Engineers, 109:1217-1253.
- Highway Research Board. 1957. Highway curves and test track design. Highway Research Board Bulletin 149.
- Hill, I. K. 1969. Runoff hydrograph as a function of rainfall excess. Water Resources Research 5(1):95-102.
- Horner, W. W. 1919. More engineering on sewer inlets. Municipal and County Engineering, Indianapolis, Indiana.
- Horner, W. W. and F. L. Flynt. 1936. Relation between rainfall and runoff from urban areas. Transactions, American Society of Civil Engineers 101:140-183.
- Horner, W. W. and S. W. Jens. 1942. Surface runoff determination from rainfall without using coefficients. Transactions, American Society of Civil Engineers 107:1039-1117.
- Horton, R. E. 1935. Surface runoff phenomena, Part I-analysis of the hydrograph. Publication 101 of the Horton Hydrological Laboratory, Voorheesville, N. Y.

- Isaacson, E., J. J. Stoker, and B. A. Troesch. 1958. Numerical solution of flow problems in rivers. Journal of the Hydraulics Division, American Society of Civil Engineers 84(HY5), Proceedings Paper 1810. 18 p.
- Iwagaki, Y., and T. Takasao. 1956. On the effects of rainfall and drainage basin characteristics on runoff relation. 5th Disaster Prevention Research Institute Memoirs, Kyoto University, Kyoto, Japan. 10 p. (In Japanese)
- Iwasa, Y. 1954. The criterion for instability of steady uniform flows in open channels. Kyoto University Faculty Engineering Memoirs 16(4):264-275.
- Izzard, C. F. 1946. Hydraulics of runoff from developed surfaces. Proceedings of the Highway Research Board 26:129-150.
- Izzard, C. F. 1950. Tentative results on capcity of curb opening inlets. Research Report No. 11-B, Highway Research Board, 36-51.
- Jens, S. W., and M. B. McPherson. 1964. Hydrology of urban areas. Handbook of Applied Hydrology (edited by V. T. Chow), McGraw-Hill Book Co., Inc., New York, New York, Section 20. 45 p.
- Johns Hopkins University, (The), Department of Sanitary Engineering and Water Resources, Storm Drainage Research Project Progress Reports, by (a) P. Bock, July 1, 1955 to June 30, 1956; (b) P. Bock and W. Viessman, Jr., July 1, 1956 to June 30, 1958; (c)
 W. Viessman, Jr., July 1, 1958 to June 30, 1959; (d) W. Viessman, Jr., July 1, 1959 to June 30, 1960; (e) W. Viessman, Jr. and J. H. McKay, Jr., July 1, 1960 to June 30, 1961; (f) J. C. Schaake, Jr., July 1, 1961 to June 30, 1962; and (g) J. C. Schaake, Jr., July 1, 1962 to June 30, 1963.
- Kaltenbach, A. B. 1963. Storm sewer design by the inlet method. Public Works 94(1):86-89.
- Keifer, C. J., and H. H. Chu. 1957. Synthetic storm pattern for drainage design. Journal of the Hydraulics Division, American Society of Civil Engineers 83(HY4), Proceedings Paper 1332, 24 p.
- Keller, N. B., D. A. Levine, and G. B. Whitham. 1960. Motion of a bore over a slope beach. Journal of Fluid Mechanics 7(2): 302-316.

- Knapp, J. W., J. C. Schaake, Jr., and W. Viessman, Jr. 1963. Measuring rainfall and runoff at storm-water inlets. Journal of the Hydraulics Division, American Society of Civil Engineers 89(HY5):99-115.
- Lai, C. 1965. Flows of homogeneous density in tidal reaches. Solution by the method of characteristics. Open-File Report, United States Department of the Interior, Geological Survey, Washington, D.C.
- Larson, C. L. 1948. Experiments on flow through inlet gratings for street gutters. Research Report 6-B, Highway Research Board.
- Larson, C. L. 1949. Grate inlets for surface drainage of streets and highways. Bulletin 2, St. Anthony Falls Hydraulic Laboratory, University of Minnesota, Minneapolis, Minnesota.
- Lax, P. D. 1954. Weak solutions of nonlinear hyperbolic equations and their numerical computations. Communications on Pure and Applied Mathematics 7:159-163.
- Lax, P. D., and B. Wendroff. 1960. System of conservation laws. Communications on Pure and Applied Mathematics 13:217-237.
- Li, W. H., J. C. Geyer, and G. S. Benton. 1951. Hydraulic behavior of storm-water inlets. I. Flow into gutter inlets in a straight gutter without depression. Sewage and Industrial Wastes 23(1): 34-46.
- Li, W. H., K. K. Sortegerg, and J. C. Geyer. 1951. Hydraulic behavior of storm-water inlets. II. Flow into curb-opening inlets. Sewage and Industrial Wastes 23(6):772-738.
- Liggett, J. A. 1968. Mathematical flow determination in open channels. Journal of Engineering Mechanics Division, American Society of Civil Engineers 94(EM4):947-963.
- Liggett, J. A., and D. A. Woolhiser. 1967. Difference solutions of the shallow water equations. Journal of the Engineering Mechanics Division, American Society of Civil Engineers 93(EM2):39-71.
- Linsley, R. K. 1971. A critical review of currently available hydrologic models for analysis of urban stormwater runoff. Office of Water Resources Research, U.S. Dept. of the Interior, Washington, D.C.
- Maksimov, V. T. 1964. Computing runoff produced by a heavy rainstorm with a moving center. Soviet Hydrology: Selected Papers 5:510-513.
- Marcus, N. 1968. A laboratory and analytical study of surface runoff under moving rainstorms. Ph.D. dissertation, University of Illinois, Urbana. 108 p.

- McPherson, M. B. 1958. Review of storm drainage design: Part C, The inlet method for Philadelphia. Water Department Progress Report, City of Philadelphia.
- Metcalf and Eddy, Inc., University of Florida, and Water Resources Engineers, Inc. 1969. Management of storm water pollution control. First Quarterly Progress Report to the Federal Water Quality Administration.
- Metcalf and Eddy, Inc., University of Florida, and Water Resources Engineers, Inc. 1971. Storm water management model. Final Report to the Environmental Protection Agency, Water Quality Office, Water Pollution Control Research Series, Washington, D.C.
- Moursund, D. G., and C. S. Duris. 1967. Elementary theory and application of numerical analysis. McGraw-Hill Book Co., New York, New York, 20-21.
- Moyer, R. 1934. Skidding characteristics of automobile tires on roadway surfaces and their relation to highway safety. Iowa State College Engineering Experiment Station Bulletin 120, Ames, Iowa.
- Mozayeny, B., and C. S. Song. 1969. Propagation of flood waves in open channels. Journal of the Hydraulics Division, American Society of Civil Engineers 95(HY3):877-892.
- Noble, C. M. 1960. Geometric design. Highway Engineering Handbook, (ed. by K. B. Woods et al.), Section 22, McGraw-Hill Book Co., Inc., New York, N. Y.
- Offner, F. F. 1973. Computer simulation of storm water runoff. Journal of the Hydraulics Division, American Society of Civil Engineers 99(HY12):2185-2194.
- Papadakis, C., and H. C. Preul. 1972. University of Cincinnati urban runoff model. Journal of the Hydraulics Division, American Society of Civil Engineers 98(HY10):1789-1804.
- Papadakis, C. N., and H. C. Preul. 1973. Testing of methods for determination of urban runoff. Journal of the Hydraulics Division, American Society of Civil Engineers 99(HY9):1319-1335.
- Pinkayan, S. 1972. Routing storm water through a drainage system. Journal of the Hydraulics Division, American Society of Civil Engineers 98(HY1):123-135.

- Preul, H. C., and C. N. Papadakis. 1970. Urban runoff characteristics. First Year Report, Rept. No. 11024 DQU, Environmental Protection Agency, Water Quality Office, Water Pollution Control Research Series, Washington, D.C.
- Preul, H. C., and C. N. Papadakis. 1972. Urban runoff characteristics. Final Report, Rept. No. 11024 DQU, Environmental Protection Agency, Water Quality Office, Water Pollution Control Research Series, Washington, D.C.
- Richtmyer, R. D. 1962. A survey of difference methods for nonsteady fluid dynamics. NCAR Technical Notes 63-2, National Center for Atmospheric Research, Boulder, Colorado. 25 p.
- Rouse, H. 1965. Critical analysis of open-channel resistance. Journal of the Hydraulics Division, American Society of Civil Engineers 91(HY4):1-25.
- Schaake, J. E., Jr. 1965. Synthesis of inlet hydrograph. Storm Drainage Project Technical Report No. 3, Department of Sanitary Engineering and Water Resources, The Johns Hopkins University, Baltimore, Maryland.
- Schaake, J. E., Jr., J. C. Geyer, and J. W. Knapp. 1964. Runoff coefficients in the rational method. Storm Drainage Project Technical Report No. 1, Department of Sanitary Engineering and Water Resources, The Johns Hopkins University, Baltimore, Maryland.
- Schreiber, D. L., and D. L. Bender. 1972. Obtaining overland flow resistance by optimization. Journal of the Hydraulics Division, American Society of Civil Engineers 98(HY3):429-446.
- Singh, V. P. 1973. Discussion of "University of Cincinnati urban runoff model" by C. N. Papadakis and H. C. Preul. Journal of the Hydraulics Division, American Society of Civil Engineers 99(HY7):1194-1196.
- Stoker, J. J. 1957. Water waves. Interscience Publishers, Inc., New York, New York, 451-481.
- Streeter, V. L., and E. B. Wylie. 1967. Hydraulic transients. McGraw-Hill Book Co., Inc., New York, New York. 329 p.
- Strelkoff, T. 1969. One-dimensional equations of open-channel flow. Journal of the Hydraulics Division, American Society of Civil Engineers 95(HY3):861-876.
- Strelkoff, T. 1970. Numerical solution of Saint-Venant equations. Journal of the Hydraulics Division, American Society of Civil Engineers 96(HY1):223-252.

- Strelkoff, T., and J. Amorocho. 1965. Gradually varied unsteady flow in a controlled canal system. Proceedings, International Association for Hydraulic Research, Eleventh International Congress, Leningrad, No. 3.16. 8 p.
- Tapley, G. S. 1943. Hydrodynamics of model storm sewer inlets applied to design. Transactions, American Society of Civil Engineers 108:409-452.
- Terzidis, G., and T. Strelkoff. 1970. Computation of open-channel surges and shocks. Journal of the Hydraulics Division, American Society of Civil Engineers 96(HY12):2581-2610.
- Tholin, A. L., and C. J. Keifer. 1960. Hydrology of urban runoff. Transactions, American Society of Civil Engineers 125:1308-1379.
- Viessman, W., Jr. 1966. The hydrology of small impervious areas. Water Resources Research 2(3):405-412.
- Viessman, W., Jr. 1968. Runoff estimation for very small drainage areas. Water Resources Research 4(1):87-94.
- Viessman, W., Jr., and A. Y. Abdel-Razaq. 1964. Time lag for urban inlet areas. Technical Report No. 10, Engineering Experiment Station, New Mexico State University, University Park, New Mexico.
- Viessman, W., Jr., and J. C. Geyer. 1962. Characteristics of the inlet hydrograph. Journal of the Hydraulics Division, American Society of Civil Engineers 88(HY5):245-268.
- von Neumann, J., and R. D. Richtmyer. 1950. A method for the numerical calculation of hydrodynamical shocks. Journal of Applied Physics 21:232-237.
- Watkins, L. H. 1962. The design of urban sewer systems. Road Research Technical Paper No. 55., Department of Scientific and Industrial Research, Her Majesty's Stationery Office, London, England.
- Wei, T. C., and C. L. Larson. 1971. Effects of areal and time distribution of rainfall on small watershed runoff hydrographs. Bulletin 30, Water Resource Research Center, University of Minnesota, Minneapolis, Minnesota.
- Wenzel, H. G. 1970. The effect of raindrop impact and surface roughness on sheet flow. Research Report No. 34, Water Resources Center, University of Illinois.
- Whitham, G. B. 1958. On the propagation of shock waves through regions of non-uniform area of flow. Journal of Fluid Mechanics 4(4):337-367.
Woo, D. C., and E. F. Brater. 1961. Laminar flow in rough rectangular channels. Journal of Geophysical Research 66(12):4207-4217.

- Woo, D. C., and E. F. Brater. 1962. Spatially varied flow from controlled rainfall. Journal of the Hydraulics Division, American Society of Civil Engineers 88(HY6):31-55.
- Wylie, E. B. 1970. Unsteady free-surface flow computations. Journal of the Hydraulics Division, American Society of Civil Engineers 96(HY11):2241-2251.
- Yeh, W. W-G., and L. Becker. 1973. Linear programming and channel flow identification Journal of the Hydraulics Division, American Society of Civil Engineers 99(HY11):2013-2021.
- Yen, B. C. 1972. Spatially varied open-channel flow equations. Water Resources Center, Research Report No. 51, University of Illinois, Urbana, Illinois. 63 p.
- Yen, B. C. 1973. Open-channel flow equations revisited. Journal of the Engineering Mechanics Division, American Society of Civil Engineers 99(EM5):979-1009.
- Yen, B. C., and V. T. Chow. 1968. A study of surface runoff due to moving rainstorms. Civil Engineering Studies, Hydraulic Engineering Series No. 17, University of Illinois, Urbana, Illinois. 112 p.
- Yen, B. C., and V. T. Chow. 1969. A laboratory study of surface runoff due to moving rainstorms. Water Resources Research 5(5):989-1006.
- Yevjevich, V. M. 1964. Bibliography and discussion of flood-routing methods and unsteady flow in channels. Water Supply Paper 1960, United States Geological Survey, Washington, D.C. 235 p.
- Yevjevich, V. M., and A. H. Barnes. 1970. Flood routing through storm drains: Part I, Solution of problems of unsteady free surface flow in storm drains, Hydrology Paper No. 43; Part II, Physical facilities and experiments, Hydrology Paper No. 44; Part III, Evaluation of geometric and hydraulic parameters, Hydrology Paper No. 45; Part IV, Numerical computer methods of solution, Hydrology Paper No. 46, Colorado State University, Fort Collins, Colorado.
- Yoon, N. Y. 1970. The effect of rainfall on the mechanics of steady spatially varied sheet flow on a hydraulically smooth boundary. Ph.D. dissertation, University of Illinois, Urbana, Illinois.
- Yoon, N. Y., and H. G. Wenzel, Jr. 1971. Mechanics of sheet flow under simulated rainfall. Journal of the Hydraulics Division American Society of Civil Engineers 97(HY9):1367-1386.

APPENDICES

•

Appendix 1

Evaluation of the Momentum and Energy Coefficients

Laminar flow

The modified velocity distribution over the flow section for wide open-channel flow is given by,

in which u is the velocity of flow in s-direction, S is the channel slope, ν is the kinematic viscosity, and d is the depth of flow. The mean velocity of flow, \overline{u} , can be calculated from Eq. 153 as

$$\overline{u} = \frac{1}{d} \int_{0}^{d} u \, dz = \frac{1}{d} \int_{0}^{d} \frac{24gS}{Cv} \left(zd - \frac{1}{2}z^{2}\right) \, dz \quad . \quad . \quad . \quad (154a)$$

or

Therefore, the momentum coefficient, β , can be given by

or

$$\beta = 1.2 \dots (155b)$$

Similarly, the energy coefficient, α , can be given by

$$\alpha = \frac{1}{d} \int_{0}^{d} \left(\frac{u}{\overline{u}}\right)^{3} dz = \frac{1}{\left(\frac{8gS}{Cv}\right)^{3} d^{7}} \int_{0}^{d} \left[\frac{24gS}{Cv}\left(zd - \frac{1}{2}z^{2}\right)\right]^{3} dz$$

$$(156a)$$

or

Turbulent flow

The velocity distribution for turbulent flow on smooth surfaces is given by the Kármán-Prandtl logarithmic equation,

$$\frac{u}{\sqrt{\tau_{o}/\rho}} = 2.5 \ln \frac{\sqrt{\tau_{o}/\rho} z}{v} + 5.5 \dots (157)$$

in which ρ is the mass density of fluid and τ is the boundary shearing stress, which may be given by

in which f is the Darcy-Weisbach friction coefficient. The mean velocity of flow is

$$\overline{u} = \frac{1}{d} \int_{0}^{d} u \, dz = \frac{1}{d} \int_{0}^{d} \sqrt{\tau_{o}/\rho} \left(2.5 \ln \frac{\sqrt{\tau_{o}/\rho} z}{\nu} + 5.5 \right) dz \quad . \quad (159a)$$

or

The velocity distribution for turbulent flow on rough surfaces is also given by the Kármán-Prandtl logarithmic equation,

$$\frac{u}{\sqrt{\tau_0/\rho}} = 2.5 \ln \frac{z}{k} + 8.5 \dots (160)$$

in which k is the roughness size. The mean velocity is

$$\overline{u} = \frac{1}{d} \int_{0}^{d} u \, dz = \frac{1}{d} \int_{0}^{d} \sqrt{\tau_{o}/\rho} \left(2.5 \, \ln \frac{z}{k} + 8.5 \right) \, dz \qquad . \qquad . \qquad (161a)$$

or

$$\overline{u} = \sqrt{\tau_0/\rho} \left(2.5 \ln \frac{d}{k} + 6 \right) \qquad (161b)$$

Subtracting Eq. 161b from Eq. 160, or Eq. 159b from Eq. 157, yields

$$\frac{u - \bar{u}}{\sqrt{\tau_{o}/\rho}} = 2.5 \ln \frac{z}{d} + 2.5 \dots (162)$$

Eq. 158 can be rewritten as

Substituting Eq. 163 into Eq. 162 gives

Therefore, the momentum coefficient, β , for turbulent flow on both smooth and rough surfaces can be expressed by

or

Similarly the energy coefficient, α , for turbulent flow on both smooth and rough surfaces can be expressed by

or

.

Appendix 2

Expressions of Geometric Elements for Curb-Type Gutter Flow Section

An inspection of a typical urban highway cross-section reveals that only 3-ft horizontal width is provided for each curb-type gutter flow section which is built adjacent to the roadway or paved shoulder with various horizontal widths. During a heavy thunderstorm, however, the downstream reach of the 3-ft wide gutter does not appear wide enough to accommodate the suddenly rising level of overflowing storm water and a portion of the paved shoulder and/or roadway tends to be subjected to the encroachment of flooding gutter flow. Thus, for completeness in the description of gutter flow, every point on the roadway crown and across paved shoulder will be regarded as a potential boundary point of the gutter flow and the corresponding geometric elements expressed according to the position of the internal boundary. Three different cases of the internal boundary position are treated herein.

The gutter flow boundary is assumed to be composed of three parts, as schematically shown in Figure 35. The left part is the crown of the roadway (Figure 6) with the horizontal width, L_{rs} , the middle portion is the surface of the paved shoulder with the horizontal width, L_{ps} , and the right side is the boundary surface of gutter with the horizontal width, L_{gu} . The hydraulic depth, D, will be used as a reference quantity in the definitions of the other geometric elements so that it must be expressed in terms of the given or specified geometric element in addition to the top width, T. For example, if the cross-sectional area, A, is given, D will be expressed in terms of A and T.

Case (1): $T \leq L_{gu}$

1. Given A, the cross-sectional area, find D.

2. Given h_{ch}, the gutter flow depth, find D.

3. Given R, the hydraulic radius, find D.

$$D = \frac{R}{1 - R/T} \left(\frac{1}{2} \tan \theta_2 + \sec \theta_2 \right) \qquad (169)$$

Figure 35. Schematic diagram of gutter flow with various locations of internal boundary.

4. Given h_{ch} , find \overline{h} , the depth of the centroid of A, in terms of h_{ch} and T. 2

$$\overline{h} = \frac{\left(h_{ch} - T \tan \theta_2\right)^2 + T \tan \theta_2 \left(h_{ch} - \frac{2}{3} T \tan \theta_2\right)}{(2h_{ch} - T \tan \theta_2)} \dots (170)$$

Case (2): $L_{gu} \leq T \leq L_{ps} + L_{gu}$

Given A, find D. 1.

Given h_{ch}, find D. 2.

$$D = \frac{L_{gu}}{2T} (2h_{ch} - L_{gu} \tan \theta_2) + \frac{(T - L_{gu})}{2T} [2h_{ch} - 2L_{gu} \tan \theta_2 - (T - L_{gu}) \tan \theta_1]$$

$$(171)$$

3. Given R, find D.

Given h_{ch} , find \overline{h} . 4.

$$\overline{h} = \{L_{gu} (h_{ch} - L_{gu} \tan \theta_2)^2 + L_{gu}^2 \tan \theta_2 (h_{ch} - \frac{2}{3}L_{gu} \tan \theta_2) + (T - L_{gu}) [h_{ch} - L_{gu} \tan \theta_2 - (T - L_{gu}) \tan \theta_1]^2 + (T - L_{gu})^2 \tan \theta_1 [h_{ch} - L_{gu} \tan \theta_2 - \frac{2}{3}(T - L_{gu}) \tan \theta_1]\}$$

$$\div \{L_{gu} (2h_{ch} - L_{gu} \tan \theta_2) + (T - L_{gu}) [2h_{ch} - 2L_{gu} \tan \theta_2 - (T - L_{gu}) \tan \theta_2] + (T - L_{gu}) [2h_{ch} - 2L_{gu} \tan \theta_2]$$

Case (3): $T \ge L_{ps} + L_{gu}$

1. Given A, find D.

2. Given h_{ch}, find D.

$$D = \frac{L_{gu}}{2T} (2h_{ch} - L_{gu} \tan \theta_2) + \frac{L_{ps}}{2T} (2h_{ch} - 2L_{gu} \tan \theta_2)$$
$$- L_{ps} \tan \theta_1) + \frac{A_s}{T} + \frac{(T - L_{ps} - L_{gu})}{T} (h_{ch} - L_{gu} \tan \theta_2)$$
$$- L_{ps} \tan \theta_1 - h_{rs}) \qquad (174)$$

in which $\rm A_S$ is the hatched area, as shown in Figure 35, defined by using Eq. 60 as

$$A_{s} = \int_{r_{s}}^{L_{r_{s}}} (-z) dx$$

$$L_{r_{s}} + L_{p_{s}} + L_{gu} - T$$

$$= - \left[\frac{1}{3} C_{1} x^{3} + \frac{1}{2} C_{2} x^{2} + C_{3} x \right]_{r_{s}}^{L_{r_{s}}} L_{r_{s}} + L_{p_{s}} + L_{gu} - T \qquad (175)$$

The quantity, h_{rs} , is the summation of the drops in height, a, b, and c in Figure 6 for each lane of traffic according to the parabolic equation, Eq. 60, and defined as

3. Given R, find D.

.

$$D = \frac{R}{T - R} \left[\frac{\left(T - \frac{1}{2}L_{gu}\right)}{T} L_{gu} \tan \theta_{2} + \frac{\left(T - \frac{1}{2}L_{ps} - L_{gu}\right)}{T} L_{ps} \tan \theta_{1} + \frac{\left(T - L_{ps} - L_{gu}\right)}{T} h_{rs} + \frac{A_{s}}{T} + L_{gu} \sec \theta_{2} + L_{ps} \sec \theta_{1} + s \right]$$

in which s is the actual width of roadway, as shown in Figure 35 and defined in Eq. 61.

4. Given
$$h_{ch}$$
, find \overline{h} .

$$\overline{h} = \left[\frac{1}{2}L_{gu}(h_{ch} - L_{gu} \tan \theta_2)^2 + \frac{1}{2}L_{gu}^2 \tan \theta_2(h_{ch} - \frac{2}{3}L_{gu} \tan \theta_2) + \frac{1}{2}L_{ps}(h_{ch} - L_{ps} \tan \theta_1 - L_{gu} \tan \theta_2)^2 + \frac{1}{2}L_{ps}^2 \tan \theta_1(h_{ch} - \frac{2}{3}L_{ps} \tan \theta_1 - L_{gu} \tan \theta_2) + \frac{1}{2}(T - L_{ps} - L_{gu})(h_{ch} - L_{ps} \tan \theta_1 - L_{gu} \tan \theta_2) + \frac{1}{2}(T - L_{ps} - L_{gu})(h_{ch} - L_{ps} \tan \theta_1 - L_{gu} \tan \theta_2) + \frac{1}{2}(2h_{ch} - L_{ps} \tan \theta_1 - L_{gu} \tan \theta_2) + \frac{1}{2}(2h_{ch} - L_{ps} \tan \theta_1 - L_{gu} \tan \theta_2) + \frac{1}{2}(2h_{ch} - L_{gu} + \frac{1}{2}(2h_{ch} - L_{gu} + L_{gu} + L_{gu} + \frac{1}{2}(2h_{ch} - L_{gu} + L_{gu} + L_{gu} + L_{gu} + L_{gu} + L_{gu} + \frac{1}{2}(2h_{ch} - L_{gu} + L_$$

in which $\overline{h_s}$ is the depth of the centroid of A from the top edge of A and defined by

$$\overline{h}_{s} = \left[\frac{1}{5} c_{1}^{2} x^{5} + \frac{1}{2} c_{1} c_{2} x^{4} + \frac{1}{3} (c_{2}^{2} + 2c_{1} c_{3}) x^{3} + c_{2} c_{3} x^{2} + c_{3}^{2} x^{2} \right]^{L} r_{s} + c_{3}^{2} x \left[\frac{L_{rs}}{L_{rs} + L_{ps} + L_{gu}} - T \right]^{L} + c_{3}^{2} x \left[\frac{L_{rs}}{L_{rs} + L_{ps}} + L_{gu} - T \right]^{L} + c_{3}^{2} x \left[\frac{L_{rs}}{L_{rs} + L_{ps}} + L_{gu} - T \right]^{L} + c_{3}^{2} x \left[\frac{L_{rs}}{L_{rs}} + L_{ps} + L_{gu} - T \right]^{L} + c_{3}^{2} x \left[\frac{L_{rs}}{L_{rs}} + L_{ps} + L_{gu} - T \right]^{L} + c_{3}^{2} x \left[\frac{L_{rs}}{L_{rs}} + L_{ps} + L_{gu} - T \right]^{L} + c_{3}^{2} x \left[\frac{L_{rs}}{L_{rs}} + L_{ps} + L_{gu} - T \right]^{L} + c_{3}^{2} x \left[\frac{L_{rs}}{L_{rs}} + L_{ps} + L_{gu} - T \right]^{L} + c_{3}^{2} x \left[\frac{L_{rs}}{L_{rs}} + L_{ps} + L_{gu} - T \right]^{L} + c_{3}^{2} x \left[\frac{L_{rs}}{L_{rs}} + L_{ps} + L_{gu} - T \right]^{L} + c_{3}^{2} x \left[\frac{L_{rs}}{L_{rs}} + L_{ps} + L_{ps} + L_{ps} + L_{ps} \right]^{L} + c_{3}^{2} x \left[\frac{L_{rs}}{L_{rs}} + L_{ps} + L_{ps} \right]^{L} + c_{3}^{2} x \left[\frac{L_{rs}}{L_{rs}} + L_{ps} + L_{ps} \right]^{L} + c_{3}^{2} x \left[\frac{L_{rs}}{L_{rs}} + L_{ps} + L_{ps} \right]^{L} + c_{3}^{2} x \left[\frac{L_{rs}}{L_{rs}} + L_{ps} \right]^{L} + c_{3}^{2} x \left[\frac$$

Appendix 3

Theoretical Evaluation of Initial Abstraction

by Using the SCS Rainfall-Runoff Relation

It seems reasonable to assume that the SCS rainfall-runoff relation may have the following general form:

in which Q = actual direct runoff in inches, P = total storm rainfall in inches, and c = "runoff" coefficient. The way in which Eq. 180 isconstructed is similar to that of the rational formula in which insteadthe rainfall intensity is related to the peak runoff rate through therunoff coefficient.

One of the primary assumptions in the SCS method is

in which F = actual infiltration excluding the initial abstraction, I_a , in inches, S = potential infiltration in inches, and P_e = potential run-off or effective storm rainfall in inches, i.e.,

$$P_e = P - I_a$$
 (182)

and

 $P = I_a + F + Q$ (183)

Substituting Eq. 182 and the expression of F from Eq. 184 into Eq. 181 yields

Note that the limitation, $P \ge I_a$, is imposed because Q in the form of Eq. 184 is not valid outside the limitation.

If an assumption on I is made, Eq. 184 can reduce to the well-known rainfall-runoff equation that is related to CN by the definition

The initial abstraction, I_a , consists of interception and surface and subsurface storage, all of which occur before runoff begins. To remove the necessity for estimating these variables, the relation between I_a and S (which includes I_a) was roughly assumed by the SCS through rainfall-runoff data for experimental small watersheds less than 10 acres in size as

Although Eq. 186 has a large standard error of estimate, it was assumed valid in the SCS method for lack of any better relationship. In a more generalized treatment, it may be assumed herein that

$$I_a = \lambda S \qquad (187)$$

in which λ = ratio of I_a to S with its value ranging between 0 and 1. For brevity, λ may be referred to as the initial abstraction index. Substituting Eq. 187 into Eq. 184 yields

The solution of Eq. 188 for S in terms of P and Q is

$$S = \frac{1}{2\lambda^2} \left[2\lambda P + (1 - \lambda)Q - \sqrt{4\lambda PQ + (1 - \lambda^2)Q^2} \right] . . . (189)$$

Note that the expression of S for $\lambda = 0.2$ was already developed by Hawkins (1973). Substitution of the Q expression from Eq. 180 into Eq. 189 gives

$$S = \frac{1}{\lambda} f(\lambda, c) P \qquad (190)$$

in which

$$f(\lambda,c) = \frac{1}{2\lambda} \left[2\lambda + (1 - \lambda)c - \sqrt{4\lambda c} + (1 - \lambda)^2 c^2 \right] \qquad (191)$$

Hence the expression of I in terms of a fraction of P is obtained by incorporating Eq. 190 with Eq. 187 as

Upon substitution of the expressions of Q and I_a from Eqs. 180 and 192, Eq. 183 yields the expression of F in terms of P as

in which

or

$$g(\lambda, c) = \frac{1}{2\lambda} \left[-(1 + \lambda)c + \sqrt{4\lambda c + (1 - \lambda)^2 c^2} \right] . . . (194)$$

Again, for brevity, $f(\lambda, c)$ and $g(\lambda, c)$ may be called the "initial abstraction" coefficient and "infiltration" coefficient, respectively. For given λ and c values, the values of $f(\lambda, c)$ and $g(\lambda, c)$ (henceforth abbreviated as f and g, respectively) can be determined from Eqs. 192 and 194, respectively.

$$\lambda = \frac{cf}{(1 - f)(1 - c - f)} \qquad (195)$$

Note that not any values of λ , c, and f ranging from 0 to 1 satisfy Eq. 195. Certainly there are restrictions on the λ , c, and f values outside of which Eq. 195 is not valid.

From the way in which Eq. 187 is constructed, the theoretical maximum value of λ is unity. Therefore, from Eq. 191 or 195, one can readily derive a relationship between c and f under this limiting value for λ (=1):

Equation 196 or 197 is plotted, as shown in Figure 36. For illustration, the c versus f relationships for other λ values are also shown in Figure 36. It is obvious from Figure 36 that any point (c, f) within the area enclosed by the three lines (i.e., Eq. 196, abscissa, and ordinate) is a possible combination of the c and f values which individual storms passing a watershed will produce. In view of an infinite number of combinations of the c and f values which individual storms passing a watershed will produce. In view of an infinite number of combinations of the c and f values within the enclosed area, the λ value computed from Eq. 195 cannot be grossly assumed constant, even for the first approximation. It is more logical to assume that for a given watershed, there may be a statistical law under which certain combinations of the c and f values occur more often than the other and vice versa. In other words, a statistical dimension (or the probability of occurrence) for each combination of the c and f values should be evaluated so as to determine the statistical mean (or average) value of λ , which is essential to the SCS method.

The distribution of the number of occurrence in the enclosed c, f space can be represented by a density function, $\phi(c, f)$, in this space,

having the property that $\phi(c, f)$ dc df represents the number of occurrence in the infinitesimal element dc df. To find the density function $\phi(c, f)$ usually requires a statistical analysis of a large amount of field data on P, Q, and I_a which is unfortunately not available on non-recorded basins. For convenience, however, if it is assumed uniformly distributed with constant_density (i.e., equal probability of occurrence), the average λ value, λ , can now be estimated by using Eqs. 195 and 196 as follows:

$$\bar{\lambda} = \frac{\int_{0}^{1} \int_{0}^{1 - \sqrt{c}} \frac{cf}{(1 - f)(1 - c - f)} \, dc \, df}{\int_{0}^{1} \int_{0}^{1 - \sqrt{c}} \frac{cf}{dc \, df}} = \frac{1}{4} \quad . \quad (198)$$

It is interesting to see that the statistical average value of λ so obtained ($\lambda = 0.25$) does not differ greatly from the assumed 0.2 in the SCS method. Both curves for $\lambda = 0.2$ and 0.25 are plotted in Figure 36 for comparison. Without knowledge on the exact expression of the density function in the real situation, one can only conclude that for the average value of λ being less than 0.25 (e.g., the assumed 0.20 in the SCS method) the probability of occurrence in the lower part of the enclosed c, f domain from the line representing $\lambda = 0.25$ must be higher than that in the upper part of the same domain.

Appendix 4

The Computer Program

1. Program Narrative

The methods and procedures of computing storm runoff from an urban highway watershed, as described in the text, were programmed in FORTRAN language and executed on the UNIVAC 1108 computer. The computer program was originally written by Min-shoung Chu in June 1973 as part of his dissertation. Since then, subsequent modifications have been made by George C. Shih in December 1973 and later mainly by the writer in an attempt to correct inaccuracies, ambiguities, and excessive limitations found in the original program. Chu's program can only compute runoff from a <u>straight</u> roadway with a curb-type gutter under a uniform stationary or moving rainstorm. Shih expanded it to include the computation of runoff from a <u>curved</u> roadway. The final phase of the program, as appended here, has the capability of computing runoff from any of the typical urban highway cross-sections (Figure 33), straight or curved, under a time- or space-varying storm, expressed by one of the hyetograph equations, Eq. 126 through Eq. 136.

The computer program consists of a main program, 38 subroutine subprograms, and 2 function subprograms. Many commonly-used variables are grouped in the COMMON statements. Some statements are self-explanatory, while others which need clarification are further explained by means of comment cards. The major options in the present program are as follows:

(1) The computation of the shock waves, except at the wavefront of a moving storm, was not executed in the present study by using some control statements although it is included in the program. Variables used in such control are IFC in the MAIN program, IFA in the subroutine INBDY, and IFC in the subroutine SLOPE. Presently the program is set to IFC = 1 and IFA = 1, but to release the control, set IFC = 2 and IFA = 2. A subroutine subprogram ignored in the computation of shock waves is NEWJ.

(2) Rainfall can be controlled either by specifying the value of STR (dimensionless time for rain to stop) or by deleting statement numbers 55 and 56 in the subroutine PARA.

2. <u>Subroutines and Functions</u>

2.1 Definition of the variables used in the COMMON statements

COMMON / B1 /

Varia	ble_	Definition	Unit
B(1)	β	momentum correction factor	-
B(2)	ε	a constant multiplier for the minimum depth,	
		εk , in Eq. (81)	; –
B(3)	β _T ,	momentum correction factor for lateral inflow	-
B(4)	θÕ	reference angle of inclination	rad
B(5)	kch	roughness size of gutter (grass or paved)	ft
B(6)	Φ	angle between terminal rainfall velocity and	
		vertical direction	rad
B(7)	δ	average diameter of raindrops	in.
B(8)	θ	angle of inclination of bed slope	rad
B(9)	Lo	horizontal bed width of channel-type gutter	
	6	(2 ft)	ft
B(10)	Т _о	reference top width	ft
B(11)	Lo	reference length	ft
B(12)	v	reference velocity	ft/sec
B(13)	f_0^0	reference friction coefficient	-
B(14)	R	reference Reynolds number	-
B(15)	h	reference depth of flow	ft
B(16)	Do	reference hydraulic depth	ft
B(17)	R	reference hydraulic radius	ft
B(18)	Ao	reference cross-sectional area	ft ²
B(19)	ro	reference rainfall intensity	in./hr
B(20)	F	reference Froude number	-
B(21)	L _{ch}	length of channel flow	ft
B(22)	L_{rs}	horizontal width of traffic lanes	ft
B(23)	k	roughness size of roadway, reference surface,	
		or a surface under study	ft
B(24)	ν	kinematic vicosity of water	ft ² /sec
B(25)	Λ	terminal velocity of raindrop	ft/sec
B(26)	r	rainfall intensity	in./hr
B(27)	i	infiltration rate	in./hr
B(28)	Qu	carry-over discharge at the upstream end of	
	-	gutter	cfs

÷

Varia	ble	Definition	Unit
B(29) B(30)	ЧL W	lateral inflow rate , velocity of a moving storm	cfs/ft ft/sec
B(31)	h_R/h_{min}	ratio of the conjugate depth of the discon-	
B(32)		a computer storage for rainfall intensity of	-
~ (02)		a moving storm	in./hr
B(33)	Ls	horizontal width of sideslope	ft
B(34)	S s	slope of sideslope	.
B(35)	^K s	roughness size of sideslope $array array array array of a result of the second surfaces$	It
B(37)	a h	exponent in $C = aS^{b}$ for paved surfaces	
B(38)	a	parameter in $C = aS^b$ for turf surfaces	2 .
B(39)	Ъ	exponent in $C = aS^b$ for turf surfaces	
B(40)	Ia	rainfall amount (depth) accounted for initial	
		detention and depression storage	in.
Varia	ble	Definition	
	<u></u>		
C(1)	β	momentum correction factor	
C(2)	sinψ		
C(3)	βL	momentum correction factor for lateral inflow	
C(4)	sinto		
C(5)	$cos v_0$ sin($\theta + \Phi$)		
C(7)	c	concentration of raindrops	
C(8)	$\sin \theta$	•	
C(9)	cosθ		
C(10)	L_{g*}	normalized horizontal bed width of channel-type gutter (L_g/L_o)	
C(11)		$L_0/(D_0\cos^2\theta_0)$	
C(12)	^k ch*	normalized roughness size of gutter (grass or par	ved)
C(19)		$r_0/(V_0 \times 12 \times 60 \times 60)$	
C(20)	Ŧ	$1/F_0$	
C(21)	^L ch	normalized channel length (L_{ch}/L_{o})	/τ.)
C(22)	Lrs* k.	normalized roughness size of roadway, reference s	surface.
0(23)	10%	or a surface under study (k/R)	Juliuo,
C(24)	u*	normalized approaching velocity of lateral inflow	$v (u/V_0)$
C(25)	$\Lambda_{\mathbf{x}}$	normalized average terminal velocity of raindrops	$ (\Lambda/V_{0}) $
C(26)	r*	normalized rainfall intensity (r/r ₀)	
C(27)	i*	normalized infiltration rate (i/r_0)	1.0
U(28)	Qu*	normalized carry-over discharge at the upstream ($0 / 4 N$)	end of
C(20)	a	gutter (V_u/A_0V_0)	
C(30)	ч ⊥ * ₩	normalized velocity of a moving principal (U/U)	
C(33)	ux Lent	normalized horizontal width of eideelone (T/T)	
C(34)	~s× θ_	angle of inclination of sideslope (L_S/L_0)	
C(35)	k _e *	normalized roughness size of sideslope (k/R_0)	

Variable	Definition
C(36) a C(37) b C(40) I _a cos θ ₀	parameter in C = aS^b for a surface under computation exponent in C = aS^b for a surface under computation $/D_0$
Variable	Definition
Z∮s	<pre>special indication: Z(1) = dimensionless time for rain to stop Z(2) = 1, indicating that there is a carry-over flow at the upstream end Z(2) = 0, indicating that there is no carry-over flow at the upstream end Z(3) = 1, indicating the need of outputing the computed interior boundary data Z(3) = 0, indicating no need of outputing the computed interior boundary data</pre>
T IME OPH NN N NCH RSL CURVE	dimensionless time, t _* overpressure head due to raindrop number of overland flow sections index for any section of flow index for channel flow section actual width of curved road surface curvature of curved roadway

CURVE curvature of curved roadway

COMMON / B2 /

Variable	Definition
H(N,K,T)	normalized flow depth at grid point K of section N at time T
V(N,K,T)	normalized flow velocity at grid point K of section N at time T
HL(N,J,T)	normalized conjugate depth on region ''L'' of the Jth dis- continuity on section N at time T
HR(N,J,T)	normalized conjugate depth on region ''R'' of the Jth dis- continuity on section N at time T
VR(N,J,T)	normalized conjugate velocity on region ''R'' of the Jth discontinuity on section N at time T
VL(N,J,T)	normalized conjugate velocity on region ''L'' of the Jth discontinuity on section N at time T
VJ(N,J,T)	normalized propagation velocity of the Jth discontinuity on section N at time T
XJ(N,J,T)	normalized location of the Jth discontinuity on section N at time T
JI(N,K,T)	<pre>index of discontinuity = 1, indicating that there is a discontinuity (or discon- tinuities) between grid points K and K-1, on section N at time T</pre>

Variable	Definition
KN NJJ	= 0, indicating that there is no discontinuity between grid points K and K-1 on section N at time T number of grid points on an overland flow section under computation number of discontinuities on a section under computation
COMMON	/ B3 /
Variable	Definition
NK(N) NJ(N) DX DT DIST	number of grid points on section N number of dicontinuities on section N normalized grid point interval normalized time interval normalized horizontal length of a section under computation
HMIN VMIN ITYPE	normalized minimum depth of flow normalized minimum velocity of flow index for the type of problem
	 = 1, uniform stationary rainfall = 2, moving rainstorm in parallel with gutter flow direction = 3, moving rainstorm in parallel with overland flow direction
·	 = 4, moving rainstorm in parallel with overland flow direction after the wavefront reaches the road curb = 5, moving rainstorm in the opposite direction of gutter
	= 6, moving rainstorm in the opposite direction of over- land flow
	= 7, moving rainstorm in parallel with gutter flow direc- tion after the wavefront reaches the inlet
IO	<pre>index for outputing results = 0, indicating skipping output = 1 indicating the need of output</pre>
OC(N,J)	outputing the name of the subroutine by which the Jth dis- continuity on section N is computed
S DS	normalized distance measured along the curved roadway normalized grid point interval along the curved roadway
COMMON	/ B4 /
Variable	Definition
II(N,T)	<pre>index for the type of the internal boundary between over- land flow of section N and gutter flow at time T = 0, indicating continuous water surface</pre>
	= 1, indicating discontinuous water surface

XI(N,T) normalized horizontal length at the downstream end of overland flow section N at time T

.

Variable	Definition
HI(N,T)	normalized flow depth at the downstream end of overland flow section N at time T
VI(N,T)	normalized flow velocity at the downstream end of overland flow section N at time T
QI(N,T)	normalized discharge at the downstream end of overland flow section N at time T
WI(N,T)	normalized propagation velocity of the discontinuity when there is a discontinuity at the internal boundary between overland flow section N and gutter flow at time T
CT(K,T)	normalized top width of gutter flow at grid point K and time T
CH (N,T)	normalized conjugate depth of the discontinuity on the gutter-flow part when there is a discontinuity at the in- ternal boundary between overland flow section N and gutter flow at time T
CV(N,T)	normalized conjugate velocity of the discontinuity on the gutter-flow part when there is a discontinuity at the in- ternal boundary between overland flow section N and gutter flow at time T
COMMON / 1	35 /

Variable_	Definition
NG(N,K)	<pre>index for outputing how the friction slope at grid point K on section N is evaluated = 0, evaluated by Darcy-Weisbach equation = 1, evaluated by energy equation = 2, at downstream boundary control</pre>
SG(N,K)	friction slope at grid point K on section N
FG(N,K)	friction coefficient at grid point K on section N
NF	index for outputing how the friction coefficient is evaluated
SF	friction slope
FF	friction coefficient

COMMON / B6 /

Variable	Definition
AA1, BB1, CC1	coefficients of an equation for the transverse profile of the road surface
SNK	bed slop at the end of overland flow on roadway
IDG	index for the type of gutter flow
	= 1, indicating curb-type gutter flow
	= 2, indicating channel-type gutter flow
SP1	cross slope of paved shoulder (3 to 5 percent)
XPG1	horizontal width of paved shoulder (12 ft, 4 ft, or 2 ft
	for each traffic lane)

Definition

SP2cross slope of gutter or median (1/12 or 10 percent)XPG2horizontal width of gutter or median (3 ft or 12 ft minus
2 ft times number of traffic lanes)

COMMON / B7 /

Variable

Variable	Definition
NL(N,J)	index for outputing how the friction coefficient on region "L'' of the Jth discontinuity on section N is evaluated
NR(N,J)	index for outputing how the friction coefficient on region "R" of the Jth discontinuity on section N is evaluated
SL(N,J)	friction slope on region "L" of the Jth discontinuity on section N
SR(N,J)	friction slope on region ''R'' of the Jth discontinuity on section ${\tt N}$
FL(N,J)	friction coefficient on region "L" of the Jth discon- tinuity on section N
FR(N,J)	friction coefficient on region "R'' of the Jth discon- tinuity on section N
NFJ	index for outputing how the friction coefficient is eval- uated at the Jth discontinuity
SFJ FFJ	friction slope at the Jth discontinuity friction coefficient at the Jth discontinuity

COMMON / B8 /

Variable	Definition
ACCU	specified accuracy
ACCUX	specified accuracy in horizontal direction
ACCUY	specified accuracy in vertical direction
HDRY	dimensionless small depth of water assumed on dry surface below which there is no flow
CC	C value in the equation $f = C/R$

COMMON / B9 /

Variable	Definition
TL(J,T)	top width on region "L'' of the Jth discontinuity in
TR(J,T)	top width on region "R" of the Jth discontinuity in
	gutter flow at time T

COMMON / B10 /

Variable	Definition
DXCH DXRS DDXCH DDXRS	dimensionless grid interval of gutter flow dimensionless grid interval of overland flow dimensional grid interval of gutter flow dimensional grid interval of overland flow
COMMON /	B11 /
<u>Variable</u>	Definition
HRR VRR	depth of water assumed on region "R" of the advancing wavefront velocity of flow assumed on the region "R" of the advancing wavefront
common /	B12 /
Variable	Definition
NDEPTH	<pre>index for locating the advancing wavefront = 0, indicating the flow depth on the back side greater than zero = 1, indicating the flow depth on the back side less than zero</pre>
COMMON /	B13 /
Variable	Definition
STR	time for rainfall to stop
COMMON /	B14 /
Variable	Definition
IWET(N)	<pre>index for determining whether or not a storm front reaches section N = 0, indicating that the storm front has not reached sec- tion N = 1, indicating that the storm front has already passed section N</pre>
COMMON /	B15. /
Variable	Definition

VO or VO1 normalized total volume of water retained on the ground surface at the initial time

Variable	Definition
VT or VT1	normalized total volume of water retained on the ground surface at time T
VIN or VIN1	normalized total volume of water inflowing into the initial volume "VO" during time interval "DT"
VOUT or VOUT1	normalized total volume of water outflowing from the initial volume "VO" during time interval "DT"

COMMON / B16 /

Variable	Definition
AAA	storm parameter, in./hr
BBB	storm parameter, minutes
CCC	storm parameter, dimensionless
TD	time duration of rainstorm, minutes
RTO	ratio of the time before the peak to the total time dura- tion of rainstorm
RMN	average rainfall intensity, in./hr, for partial duration of rainfall up to time, t
RAV	average rainfall intensity, in./hr, for total duration of rainfall

COMMON / B17 /

. .

Variable	Definition
FINF	final infiltration rate of soil, in./hr
BETTA	soil infiltration parameter, dimensionless
ALPHA	soil infiltration parameter, dimensionless
то	soil infiltration parameter, minutes
TP	time of ponding, minutes
VSF	cumulative infiltration volume per unit surface area, inches
SPI	potential infiltration, inches

2.2 Description of subroutine subprograms

Name	Description
ADW	solve the advancing wavefront problem due to a moving rainstorm
CEQS	solve two characteristic equations to obtain the velocity and depth of flow at grid points
CONJ	evaluate the conjugate depths and velocities of the discon- tinuity
CRISEC	locate critical sections, if any
CROS S	calculate the velocity and depth of flow at a grid point when a discontinuity crosses the grid point
CROWN	formulate the equation of the transverse profile of a road surface

Name	Description
CS	interpolate hydraulic depth and velocity of flow and the locations of C^+ - and C^- -characteristic curves between
	two grid points
DBDY	arrange downstream boundary condition
DPT	compute the velocity and depth of flow at the downstream grid point
ERR	compute the computational error
EVDT	evaluate next time interval in the subsequent computation
FRIC	evaluate the Darcy-Weisbach friction coefficient
GEOM	compute the geometric elements of channel sections
GOON	substitute the values of all variables computed at time level 2 into the corresponding variables at time level 1
INBDY	compute the velocity and depth of flow at the internal boundary between road surface and curb-type gutter
INFLT	compute the infiltration rate and time of ponding
INLET	compute the runoff rate at the inlet and the carry-over flow rate, if any
INPT	arrange the computation of flow velocity and depth at interior grid points
INTAL	arrange the various assumptions of initial conditions
JL	compute the velocity and depth of flow on region "L" of the discontinuity
JL1	use C ⁺ -characteristic equation and one of the equations of discontinuity to compute the velocity and depth of flow on region '11' of the discontinuity
JR	compute the velocity and depth of flow on region "R" of the discontinuity
JR1	use C [•] -characteristic equation and one of the equations of discontinuity to compute the velocity and depth of flow on region "R" of the discontinuity
JUMP	compute the location and propagation velocity of the dis- continuity
NEWJ	search new discontinuity, if any
OPHEAD	compute the overpressure head due to raindrop impact
OUPT	output the results of computation
PACKI	eliminate any discontinuity which disappears
PARA	compute dimensionless variable C listed in COMMON / B1 /
PREP	compute the values of those parameters which change with section N
RAIN	compute the rainfall intensity
REF	compute the reference parameters
SLOPE	compute the runoff discharge from the sideslope
STORM	compute the values of those parameters which change with the longitudinal coordinate
TYPE 4	arrange the gutter flow conditions for the computation of type 3 moving rainstorm when the advancing wavefront reaches the road curb
UBDY	arrange unstream boundary conditions

Name	Description
UPT	compute the velocity and depth of flow at the upstream grid point
WRITJ	output the computed results at discontinuities
2.3.	Description of function subprograms
Name	Description

EQDISexpression of conditions at discontinuityFRTSTexpression of Froude number

3. Input Data Description

Card <u>No.</u>	Variable	Format	Card <u>Columns</u>	Description
1	ITYPE	15	1 to 5	defined in COMMON /B3/
	NOUT	15	6 to 10	output at each n-th iteration
	NN	15	11 to 15	defined in COMMON /B1/
	TEND	F5.0	16 to 20	dimensionless time of this program ending
	DDXCH	F5.0	21 to 25	defined in COMMON /B10/
	DDXRS	F5.0	26 to 30	defined in COMMON /B10/
	CURVE	F5.0	31 to 35	defined in COMMON /B1/
2	B(1)	F10.0	1 to 10	defined in COMMON /B1/
	B(2)	F10.0	11 to 20	defined in COMMON /B1/
	B(3)	F10.0	21 to 30	defined in COMMON /B1/
	B(4)	F10.0	31 to 40	defined in COMMON /B1/
	B(5)	F10.0	41 to 50	defined in COMMON /B1/
	B(6)	F10.0	51 to 60	defined in COMMON /B1/
	B(7)	F10.0	61 to 70	defined in COMMON /B1/
	B(8)	F10.0	71 to 80	defined in COMMON /B1/
3	B(9)	F10.0	1 to 10	defined in COMMON /B1/
	B(10)	F10.0	11 to 20	defined in COMMON /B1/
	B(11)	F10.0	21 to 30	defined in COMMON /B1/
	B(12)	F10.0	31 to 40	defined in COMMON /B1/
	B(13)	F10.0	41 to 50	defined in COMMON /B1/
	B(14)	F10.0	51 to 60	defined in COMMON /B1/
	B(15)	F10.0	61 to 70	defined in COMMON /B1/
	B(16)	F10.0	71 to 80	defined in COMMON /B1/

Card No.	Variable	Format	Card <u>Columns</u>	Description
4	B(17)	F10.0	1 to 10	defined in COMMON /B1/
•	B(18)	F10.0	11 to 20	defined in COMMON /B1/
	B(19)	F10.0	21 to 30	defined in COMMON /B1/
	B(20)	F10.0	31 to 40	defined in COMMON /B1/
	B(21)	F10.0	41 to 50	defined in COMMON /B1/
	B(22)	F10.0	51 to 60	defined in COMMON /B1/
	B(23)	F10.0	61 to 70	defined in COMMON /B1/
	B(24)	F10.0	71 to 80	defined in COMMON /B1/
5	B(25)	F10.0	1 to 10	defined in COMMON /B1/
	B(26)	F10.0	11 to 20	defined in COMMON /B1/
	B(27)	F10.0	21 to 30	defined in COMMON /B1/
	B(28)	F10.0	31 to 40	defined in COMMON /B1/
	B(29)	F10.0	41 to 50	defined in COMMON /B1/
	B(30)	F10.0	51 to 60	defined in COMMON /B1/
	B(31)	F10.0	61 to 70	defined in COMMON /B1/
2.1	B(32)	F10.0	/1 to 80	defined in COMMON /B1/
6	B(33)	F10.0	1 to 10	defined in COMMON /B1/
	B(34)	F10.0	11 to 20	defined in COMMON /B1/
	B(35)	F10.0	21 to 30	defined in COMMON /B1/
	B(36)	F10.0	31 to 40	defined in COMMON /B1/
	B(37)	F10.0	41 to 50	defined in COMMON /B1/
	B(38)	F10.0	51 to 60	defined in COMMON /B1/
	B(39)	F10.0	61 to 70	defined in COMMON /B1/
	B(40)	F10.0	71 to 80	defined in COMMON /B1/
7	NL	15 15	1 to 5	number of traffic lanes
			0 E0 IU	defined in COPHON / BO/
	1(1)	F 10.0	11 LO 20	elevation of roadway, usually taken
	Y(2)	F10.0	21 to 30	vertical drop of crown in ft for one-lane width
	Y(3)	F10.0	31 to 40	vertical drop of crown in ft for two-lane widths
	SUPEL	F10.0	41 to 50	super elevation, ft per ft of road- way width
	TRFCT	F10.0	51 to 60	side friction (cornering ratio) between tires and road surface
	SPEED	F10.0	61 to 70	design speed for roadway, miles per hour

153

T

Card No.	Variable	Format	Card Columns	Description
8	SP1	F10.0	1 to 10	defined in COMMON /B6/
	XPG1	F10.0	11 to 20	defined in COMMON /B6/
	SP2	F10.0	21 to 30	defined in COMMON /B6/
	XPG2	F10.0	31 to 40	defined in COMMON /B6/
9	AAA	F10.0	1 to 10	defined in COMMON /B16/
	BBB	F10.0	11 to 20	defined in COMMON /B16/
	CCC	F10.0	21 to 30	defined in COMMON /B16/
	TD	F10.0	31 to 40	defined in COMMON /B16/
	RTO	F10.0	41 to 50	defined in COMMON /B16/
10	FINF	F10.0	1 to 10	defined in COMMON /B17/
	BETTA	F10.0	11 to 20	defined in COMMON /B17/
	ALPHA	F10.0	21 to 30	defined in COMMON /B17/
	TO	F10.0	31 to 40	defined in COMMON /B17/
11	NRSOUT	8011	1 to 80	any of the 80 columns punched with any digit except zero represents the corresponding flow sections needed to be output

4. Program Flowchart

The hand-drawn flowchart of the computer program is shown in Figure 37.

Figure 37. Flow chart of the computer program.

5. Description of Variables Used as Counters and Accumulators

Program	Variable	Initial	Reset	
Name	Name	Value	(yes or no)	Description
MAIN	IOUT	1	no	Search for which of the over- land flow sections needed to be output.
MAIN	NOCT	0	no	Count the number of itera- tions in the computation of time required for filling depression.
MAIN	NCT	0	no	Count the number of time levels in the computation.
ADW	NCTT	0	yes	Count the number of itera- tions in the computation of wavefront location. Reset at new time level.
CRISEC	NCT	0	yes	Count the number of itera- tions in the computation of critical section. Reset whenever there is a new critical section in the flow.
CROSS	NCT	0	yes	Count the number of itera- tions in the computation of V and h at a point on the path of the discontinuity in the x, t-plane when the discontinuity crosses the grid point. Reset whenever such computation is needed.
CS	NCT	0	yes	Count the number of itera- tions in the computation of D, V, and the location of C+- or C ⁻ -characteristic
				curve. Reset for every computation at a grid point.

Program	Variable	Initial	Reset	Description
	Malle	varue	(yes of no)	DESCLIPTION
DPT	NCT	0	yes	Count the number of itera-
•				V and h for subcritical flow
				at the downstream end of
				flow. Reset whenever such
				computation is needed.
FRIC	NCT	0	yes	Count the number of itera-
				tions in the computation of
				cient, f , using Eq. 20. Re-
				set whenever such computation
			· .	is needed.
INBDY	NCT	0	yes	Count the number of itera-
				tions in the computation of
				face on the internal boun-
				dary. Reset for every com-
				boundary.
ፐ እገር ተገ	አርጥ	0	20	Count the number of itera
THEFT	NGI	0	110	tions in the computation of
				t_p and t_o from rainstorm
				and soll inflitration param- eters.
INPT	NCT	0	yes	Count the number of itera-
				V in the overland flow part
				for an ITYPE 2 or 5 storm.
				tation is needed.
INTAL	NCT	0	no	Count the number of itera-
				tions in the computation of
				initial detention assumed.

.

.

157

Program <u>Name</u>	Variable <u>Name</u>	Initial Value	Reset (yes or no)	Description
INTAL .	NCT	0	no	Count the number of itera- tions in the computation of initial V on the ground sur- face corresponding to the assumed initial detention.
JL1	NCT	0	yes	Count the number of itera- tions in the computation of V_L and h_L on region "L" of the discontinuity. Reset whenever such computation is needed
JR1	NCT	0	yes	Count the number of itera- tions in the computation of V_R and h_R on region "R" of the discontinuity. Reset whenever such computation is needed.
NEWJ	NCT	0	yes	Count the number of itera- tions in search for a new discontinuity between two grid points. Reset for every such computation be- fore computing V and h at a grid point.
REF	NCT	0	no	Count the number of itera- tions in the computation of reference (normalizing) quan- tities such as the flow depth, h _o , using Eq. 72.
REF	NCT	0	no	Count the number of itera- tions in the computation of the Darcy-Weisbach friction coefficient, f , for reference flow.
TYPE4	NCT	0	no	Count the number of itera- tions in the computation of V for gutter when the advan- cing wavefront reaches the road curb under TYPE 3 storm.

6. Program Listing

6.1. The Job Control Language (JCL)

In preparing and executing computer programs on the UNIVAC 1108, the following EXEC-8 system control cards are needed. Note the symbol @ which is used in column 1 of all control cards is a 7-8 punch. To punch this symbol, hold the MULT PCH and NUM keys, and punch a 7 and 8.

(1) The <u>Run card</u> is the first card of each job deck. This card contains the project number, estimated time, and estimated pages.

(2) The <u>HDG card</u> is used to place a heading at the top of each page of both the program listing and any output.

(3) A FOR card must precede each FORTRAN deck included in the job. It is used to inform the system that a FORTRAN deck follows.

(4) The <u>XQT card</u> must follow all the FORTRAN decks. It is used to indicate that execution is desired. If one wants to compile only, simply delete this card. The data cards should immediately follow the XQT card.

(5) The FIN card indicates the end of the job deck.

(6) The remote control card is simply a card with a 7-8 punch in columns 1 and 2. This card followed immediately by two blank cards is needed on a remote terminal UNIVAC 9200.

An example of a complete FORTRAN job deck is as follows:

@RUN
@HDG
@FOR, IS MAIN,MAIN
@FOR, IS ADW,ADW
...
@FOR, IS WRITJ,WRITJ
@XQT
...
data cards, if any

@FIN @@remote control card blank card blank card

There are a wide variety of options in preparing and executing the control cards. For example, the @ASG statement is used to name magnetic tape or Fastrand drum files, to assign temporary or catalogued files to the requesting run, to specify files to be catalogued, and to specify storage methods and requirements for these files. Other executive control statements, too many to be cited herein, can be found in the UNIVAC 1108 user's guide.

6.2. Source listing

The main program is listed first and then followed by the subprograms in the alphabetic order. For convenience in reference, the statement numbers in each of the main program and subprograms are given.

С 1 DYNAMIC BEHAVIOR OF RUNOFF FROM HIGHWAY WATERSHEDS 2 C 3 С UNDER TIME- AND SPACE-VARYING RAINSTORMS 4 С 5 С С MAIN PROGRAM 6 7 COMMON /B1/ B(40)+C(40)+Z(10)+TIME+OPH+NN+N+NCH+RSL+CURVE COMMON /32/ H(27,27,2) +V(27,27,2) +HL(27,10,2) +HR(27,10,2) 8 \$VR(27,10,2),VL(27,10,2),VJ(27,10,2),XJ(27,10,2),JT(27,27,2),KN,NJJ 9 COMMON /B3/ NK(27),NJ(27),DX,DT,DIST,HMIN,VMIN,ITYPE,IO,OC(27,10), 10 11 \$S+DS COMMON/B6/AA1,BB1,CC1,SNK,IDG,SP1,XPG1,SP2,XPG2 12 COMMON/BS/ACCU+ACCUX+ACCUY+HDRY+CC 13 COMMON /B10/ DXCH, DXRS, DDXCH, DDXRS 14 COMMON /814/ IWET(27) 15 COMMON/816/AAA+883+CCC+TD+RTO+RMN+RAV 16 COMMON/B17/FINF, BETTA, ALFHA, TO, TP, VSF, SPI 17 DIMENSION NRSOUT(27) +NST(27) 18 DIMENSION STAR(18) 19 DATA NCT/0/,STAR/18** * * **/ 20 READ(5 +1 00) ITYPE+ NOUT +NN+ TEND+ DDXCH +DDXR S+ CURVE 21 100 FORMAT (315+10F5.0) 22 NOUT OUTPUT AT EACH N-TH ITERATION 23 C NUMBER OF SECTIONS OF ROADSURFACE FLOW 24 С NN DIMENSIONLESS TIME OF THIS PROGRAM ENDING 25 С TEND 26 NCH=NN+1 С N=NCH FOR CHANNEL FLOW 27 NSENCH+1 28 29 С NS FOR FLOW ON SIDESLOPE С CURVE=CURVATURE CF ROADWAY, 1/RADIUS (FT). SET ZERO FOR STRAIGHT 30 31 С ROADWAY READ(5+101) (B(I)+I=1+40) 32 101 FORMAT(8F10.0) 33 34 С EVALUATE THE EQUATION OF ROAD SURFACE CROWN 35 IF (NN. GT.1) CALL CROWN 36 С CALL RAIN(1.0.) 37 С COMPUTATION OF THE REFERENCE QUANTITIES 38 39 CALL REF 40 CALL INFLT(1.0.) COMPUTATION OF THE PARAMETERS USED IN THE PROGRAM С 41 42 CALL PARA 43 С WRITE(6,201) ITYPE, NOUT +N N+ TEND + DDXCH +DDXRS 44 201 FORMAT(/* ITYPE = **I2 ** NOUT = **I3 ** NN = **I3 ** TEND = *. F6.2 . 45 \$* DDXCH = ',F6.2,* FT DDXPS = ',F6.2,* FT*) 46 47 С 48 С SET UP INITIAL CONDITIONS 49 CALL INTAL 50 IF(NN.EQ.1) GO TO 6 51 С READ IN SECTION NOS. OF FOAD SURFACES NEEDED TO BE OUTPUT 52 С READ(5+102)(NRSOUT(I)+I=1+NN) 53 54 102 FORMAT(8011) IOUT=1 55 56 DO 5 I=1 .NN

57			IF(NRSOUT(I), EQ. 6) GO TO 5
58			NST(IQUI)=I
59			TOUT=TOUT+1
50	•	5	CONTINUE
61	C	-	
62	č		COMPUTE TIME REQUIRED FOR FILLING DEPRESSION, B(40), INCHES
67	č		TREASED THEN STANLESS TIME FOR OVERCOMING OFFENTION AND DEPRESSION
64	č		TELEDITIES TO A COLOR STATE ON OVERCONTRO DETENTION AND DEL RESSION
65			
65			
60			$ KLD \ge D \times D Z \times D Z \times D Z $
50			
60			FIL-RINA (RFUS +0 (11)/0 (12)/ 3000 •
70			
70		70.0	
11		300	FORMATIVE THERE IS NO RUNOFF I
12			STOP
13		50	
14			
75		51	TRFDS = (1 + (12 - 11))/2.
76			NOCI=NOC T+1
11			1F(NOCI.GI.3U) S = SQRI(-1.)
78			IF ((12-11).L1.ACCU) GO TO 52
79			CALL RAIN(3, TRFDS)
80			PTL=RMN*TRFDS*B(11)/P(12)/3600.
81			IF (ABS(B(40)-PTL).LT.ACCU) GOTO 52
82			IF(B(40).LT.PTL) COTO 55
83			TITTRFDS
84			6010 51
85		55	T2=TRFDS
86			6010 51
87		52	IF(TIME.LT.TRFDS) TIME=TRFDS
88		53	TDIM=TIME+B(11)/8(12)
89			WRITE(6,202) TIME.TDIM
90		202	FORMAT(/' DIMENSIONLESS TIME FOR DEPRESSION STORAGE - INTERCEPTIC
91		9	N = 0.610.47 (DIMENSIONAL TIME = $0.710.30$ SEC.))
92	С		EVALUATION OF TIME INTERVAL, DT
93		6	CALL EVDT
94	C		
95	С		START TO NEXT TIME INTERVAL COMPUTATION
96			TIME=TIME+DT
97			IF(TIME.GT.TEND) STOP
98	С		
99	С		IO INDICATES OUTPUT CONTROL
100	C		
101	С		1 OUTPUT
102			10=0
103			NCT=NCT+1
104			IF (NCT/NOUT+NOUT-EQ-NCT) IO=1
105		11	IF(10.EQ.0) GO TO 12
106			TDIM=TIME*B(11)/B(12)
107			WRITE(6+200) STAR+STAR+STAR(1)+TIME+TDIM+(STAR(1)+I=1+7)+STAR
108		200	FORMAT (2 (/18A6)/AC + TIME = + F9.3 + 5 X+ + (D IMENSION AL TIME = + + F9.3 +
109		1	5* SEC.) ** 7A6/18A5)
110		12	100=10
111			I0=0
112			IF(ITYPE.EQ.2) GC TO 35
113	С		COMPUTE FLOW ON SIDESLOPE

. 162
114			N=NS
115			IF (TIME.LT.TP*60.*B(12)/B(11)) GOTO 15
116			CALL SLOPE
117		15	D0 20 N=1+NCH
118	С		
119			CALL PREP
120	С		
121	•		IF(KN.LT.2) 6010 20
122			IF(IIYPE-EG.3) GO IO 41
123			CALL INPT
124	c		
125	č		COMPUTATION OF UPSITEAM POUNDARY
125	•		TE (N-1 T-NCH) CALL UBDY
1 7 7		•	
129			
120			
170		20	
171	c	20	CONTINUE COD COMPUTATION OF NEW Y OCCUPPING SHOCK HAVES
172	ř		IFC-INDEX FOR COMPONATION OF NEWLY OCCURRING SHOCK WAVES
177	C		ASSUME THE OCCORRENCE OF SHOCK WAYES (IIC-2) OTHERWISE (IIC-1)
133	~		TO COMPUTE THE UPSTDEAM AND DOUNDTREAM END OF CHANNEL FLOW AND
134	ι c		TO COMPUTE THE OFSTREAM AND DOWNSTREAM END OF CHANNEL FLOW AND
135	L.	2.4	
135		21	
137	~		LALL FREF
138	L		75/(0) 17 0X 0070 70
139			$1 \cap (X \cap L) \circ (2) = 0 \cap (2 \cap L) \circ (2 \cap L) = 0 \cap (2 \cap L) \cap (2 \cap L$
140			$1 \cap (1 \cap $
141	~		IF (N.E.G.NN. AND. IDG. E.G.Z) CALL INDUT(2.015 I) HHOII 727
142	C ·		CONDUCT UNCTOFAN AND DOUNT TOFAN DOUNDADY (F. CHANNEL, F. D.)
143	ι	.	COMPUTE UPSTREAM AND DUWNS TREAM BOUNDART OF CHANNEL FLOW
144		25	IF (I) FO NOR ON A THEFT
145	~		IF (NOE GONCH) CALL INLE I
146	L		TEAN KAN OT ON CALL DACK I
147	~		IF (NJ(N)·GI·U) CALE FACKJ
148	Ļ		THE FULLOWING STATEMENT IS UPILUNAL
143			IF (IF COERS) CALL NEWS
150		30	
151	~	32	10-100
152	L C		
153	C		
154			
155			
156			
157			IF (I.E.G. 1001) NENCH
158			1 + (11YPE + EQ.2 - AND - 1N+1(N) + EQ + U) = O = 10 + 4U
159			IF (ITYPE-EG-5-AND-IWET(N)-EQ-U) GO TO 40
160			2(3)=0.
161			IF (1.EQ.1001-1) 2(3)=1.
162			
163			CALL OUPT
164			IF (NN-EQ-1) GO 10 31
165		40	CONTINUE
100			
167			
168	~		CALL OUPT
169	C		
170	С		CALCULATE THE COMPUTATIONAL ERROR

171	31 CALL	ERR(2)
172	C	
173	C GO 01	N ITERATION
174	< CALL	GOON
175	GO TO	3 0
176	35 N=NC	4
177	CALL	PREP
178	CALL	ADW
179	IF(N.	J(NCH).GT.D) CALL PACKJ
180	GO TO	0 32
181	41 CALL	ADW
182	IF(N,	J(N).GT.D) CALL PACKJ
183	IF(IT	YPE. EQ. 4) GO TO 42
184	43 Z(3)=	0.
185	10=10	0
186	IFUIC	• EQ.0) 60 TO 31
187	CALL	PREP
188	CALL	OUPT
189	GO TO	31
190	42 CALL	TYPE4
191	GO TO	32
192	END	·· ·

•

1		SHRPOHTTNE ADD		
2	r	SOLVE THE ADW		
्र	v	SOLVE THE ADVANCING WAVEFRONT PROBLEM DUE	TO A MONTHO DI	THETADU
		COMMON /81/ 8(40), C(40), Z(10), TIME, GPH, NN.	NONCH DOLLOUD	VINSTORM
7	,	COMMON /B2/ H(27+27+2)+V(27+27+2)+H(127-10		E
5	a	\$VR(27,10,2),VL(27,10,2),VL(27,10,2),XU27	921+HRL2/+10+2	·) •
6		COMMON /93/ NK(27) N 1/271 DY DT DT DT	10,2),JI(27,27	·2) · KN · NJJ
7		\$5.DS	VMIN, IT YPE, IO,	00(27.10).
8		COMMON / RH (TTIOT ON HTIS		
9		SCT (27, 2) (112/12) *X1(27,2) +HI(27,2) *VI((27.2) .Q T(27.2)	+UT (27 - 2)
10		CONMON (27+2)+CV(27+2)		*#1(2/#2)9
11		COMMON 7857 NG[27,27], SG[27,27], FG[27,27].	NESEEE	
1 2		COMMON/BG/AA1+BB1+CC1+SNK+IDG+SP1+YPG1+SP2		
12		COMMON /87/ NL(27, 10) NR (27, 10) -51 (27, 10)	TAF GZ	
13		\$FR(27,10), NEJ, SEJ, FEI	SR(27+10)+FL(2	7.10).
14		COMMON /58/ ACCULACCUY ACCUY HORY OF		
15		COMMON /B9/ TL(10, 2) TD(10,		
16		COMMON (PID/ DYON DUTE (10,2)		
17		COMMON (DITO UXCH+DXRS+DDXCH+DDXRS		
18		CONMON /BIL/ HRR+VRR	•	
19		COMMON /B12/ NDEPTH		÷
20		COMMON /B14/ IWET(27)		
20		COMMON /B15/ VO,VT,VIN,VOIT		· · · · · · · · · · · · · · · · · · ·
21	·	DIMENSION HH(2)		•
22		DIMENSION FTT(2) x 12TT(2)		·
23		DATA NCO/D/ NAME / ADURA		
24		TIMETIME_DT		
25				
26		DXBC1=XDC1 (2(1))		
27				
29		DXPG2=XPG27B(11)		
20		XJI=XJ(N+NJJ+1)		
23		KJ=XJ1/DX+1.999999	•	
30		K1=KJ-1		
31		IF(ITYPE.EQ.2.0R.TTYPE.EQ.71 COTO CO		
32		4 DO 5 K=2 K1		
33		XKEFL GAT (K-1)+DY		
34		CALL STOPMYYK TTW		
35				
36		KA~V. 1		
37			· · ·	
7.9				
70		XA=XK+DX		÷
35		XB=XK		
40		XC=XK+DX		
41		IF(K.EQ.K1) XC=XJ1		
42		HA=H(N,KA,1)		
43		HB=H(N+K+1)		
44		HC=H(N+KC+1)		•
45				
46		VATV (NeVALZ)		• · ·
47				
48				
49		VC-VEN+KC+1)		
7 J 5 0		Trik.EQ.K1) VC=VL(N,NJJ,1)		
50	ę.,	UALL GEOMIZ + AA + HA + RA + TA + DA + 1 + 1 + XA 1		
21		CALL GEOM(2, AB, HB, RB, TB, DB, 1, 1, VP.		
52		CALL GEOM(2, AC+HC+RC+TC+DC+1+1+KB)		2.1
53		FRB=FRIST(VB.DP.CPH.C/1) O(5) O(5)		
54		CALL CS(1, YA YP, YD, YD, YD, D) (20) (20) (20)		
55		TELEBBOT UN CONTON		•
56			1. A.	
		+ INGTAD+LI+AUCU) GO TO 5		

;

57			CALL CS(-1 XB . XC . XE . XB . DB . DC. DE . VB . VC . VE)	
5-8			IF (NDEPTH_EQ.1) CO TO 5	
59			IF (XE. GT.XC.AND.K.EQ.K1) GO TO 6	
60			GO TO 2	
61		1	CALL CS(-1XA·XB·XE·XB·DA·DB·DE·VA·VB·VE)	
62 .	· ·	2	CALL CEGS(VD+DD+VE+DE+V(N+K+2)+H(N+K+2)+XD+XE+DT+DT+XB)	Ċ
63			NG(N,K) = NF	
64			SG(N+K)=SF	
65			FG(N+K)=FF	
66		5	CONTINUE	
57		0		
C 9		c		
60 69	•	ø	NL = NL = L	
70			$A \cap (L \cup A) + A \cap (L \cup A) + A \cap (A \cap A)$	
70		-7	TE(TTMPE E 0 2N + 0 TO E 2	
/ 1 7 7	•	¢,		
~ ~				
13			1+(NCU+EQ+1) 50 10 3	
74				
15		_	60 10 8	
76		3	V0=V1	
77		`8	XR=(TIME-DT/2.)*C(30)	
78			VIN=B(32)/B(19)*XR*DT*TB*C(19)*B(10)*B(11)/B(18)+C(28)*B(12)/B(1	. 1
79			VT1=0.	
80			DO 10 K=2.K1	
81			XK=FLOAT(K-1)*DX	
82			XK1=XK-DX	
83			XKA=(XK+XK1)/2.	
84			CALL STORM(XKA+TIME)	
85			CALL GEOM(2+AA+H(N+K-1+2)+RA+TA+DA+1+2+XK1)	
86			CALL GEOM(2+AB+H(N+K+2)+FB+TB+DB+1+2+XK)	
87	,		YT1=VT1+(AA+AE)+DX/2./C(3)	
88		10	CONTINUE	
89		24	VT2=V0+VTN-VT1	
9 n		~ ·		
91 91				
97			V 17 - V 11 + V 11 N = N, 1 1 = 1 1 + DT	
33 04		0		
54 05		17	UNIT DETINDE I TITTI JONGO VELONELOVRONKODZOJ	
30 00		11		
30			XNJ- (X J2 / 1 (1 / 1) * XK) / 2.	
91			CALL SIGRM(XKJ) IME)	
38			CALL GEOM(2+ALL+HLL+HL+HL+HL+HL+HL+HL+HL+HL+HL+HL+HL+	
93			CALL GEOM(2,ARR,HRR,RRR,TRR,DRR,1+2,XJ2TT(ITT))	
00			DXJ=XJ2TT(ITT)-FLOAT(K1-1)*DX	
01			CT22=(AB+ALL)*DXJ/2./C(9)	
02			IF(VT2.LT.ACCU) GO TO 26	
03			FTT(ITT)=YT2-CT22	
04			IF(ABS(FTT(ITT)).LT.ACCU) GO TO 18	
05			IF(ITT.EQ.1) GO TO 27	
06			IF(NCTT.CT.2D) SS=SQRT(-1.)	
07			XJ2=(FTT(1)*XJ2TT(2)-FTT(2)*XJ2TT(1))/(FTT(1)-FTT(2))	
08			XJ2TT(1)=XJ2TT(2)	
09			$x_{J2}TT(2) = x_{J2}$	
10			FTI(1)=FTI(2)	
11			60 10 9	
12		27	TTT=2	
13		- •	¥J2=XJ2+0_1±DX	
			nemeneer define n	

114	XJ2TT(2) = XJ2
115	GO TO 9
115	18 CONTINUE
117	26 VT=VT1+(AB+ALL)/2.+DXJ/C(9)
113	22 IF(ITYPE.EQ.3.AND.XJ2.GT.DIST) GO TO 80
119 '	IF(ITYPE.EQ.2.AND.XJ2.GT.C(21)) GO TO 57
120	IF(TIME*C(30).GT.XJ2) GO TO 20
121	25 IF(DXJ.LT.DX) GO TO 21
122	K=K1+1
123	H(N,K,2)=H(N,K1,2)-(H(N,K1,2)-HLL)*DX/DXJ
124	V(N+K+2)=V(N+K1+2)+(V(N+K1+2)+VLL)+DX/DXJ
125	N NN N=N
126	N=K
127	IF(ITYPE.EQ.2) CALL INBDY(1.XX.HH.TT.2)
128	N=NNN
129	CALL PREP
130	21 CALL FRIC(VLL+HLL+FLL+RLL+REL+RECL+IRL+2+XJ2
131	SL(N+NJJ)=C(4)*FLL*ABS(VLL)*VLL/(B(13)*RLL)
132	FL(N+NJJ)=FLL
133	VOUT=0.
134	OC(N+NJJ)=NAME
135	19 HL(N+NJJ+2)=HLL
136	VL(N+NJJ+2]=VLL
137	IF(ABS(ALL-ARR).LE.ACCU) VJ(N.NJJ.2)=0.
138	IF(ABS(ALL-ARR).LE.ACCU) GOTC 23
139	VJ(N+NJJ+2)=(ALL+VLL-ARR+VRR)/(ALL-ARR)
140	23 VR(N+NJJ+2)=VRR
141	HR(N+NJJ+2)=HRR
142	XJ(N+NJJ+2)=XJ2
143	IF(ITYPE.EQ.2) TL(NJJ.2)=TLL
144	IF(ITYPE.EQ.2) TR(NJJ.2)=TRR
145	IF(ITYPE.EQ.2) KJ2=XJ2/DXCH+0.99999
146	IF(ITYPE.EQ.2) IWET(KJ2)=1
147	RETURN
148	20 IF(TIME*C(30).GT.DIST) GO TO 80
149	HL(N+NJJ+2)=HRR
150	VL(N,NJJ,2)=VRR
151	VJ(N,NJJ+2)=0.
152	HR(N,NJJ,2)=HRR
153	VR(N,NJJ,2) = VRR
154	XJ(N,NJJ) = TIME = C(3D)
155	IF(ITYPE.EQ.2) KJ2=TIME+C(30)/DXCH+0.99999
156	IF(ITYPE.EQ.2) IWET(KJ2)=1
157	RETURN
158	$28 \text{ VJ}=\text{VJ}(\text{N} \cdot \text{NJJ} \cdot 1)$
159	
160	$HR(N \cdot NJJ \cdot 2) = HRR$
161	VR(N•NJJ•2)=VRR
162	$XJ(N \cdot NJJ \cdot 2) = XJ2$
163	VJ(N,NJJ,2)=VJ1
164	RETURN
165	80 ITYPE=4
166	HL (N+NJJ+2)=HLL
167	VL(N+NJJ+2)=VLL
168	HI 2= (HE (N • NJJ • 1) + 4E (N• NJL № 2))/2
169	VL2=(VL(N+NJJ+1)+VL(N+NJJ+2))/2=
170	CALL GEOM(2+AL2+HL2+RL2+TL2+DL2+T+2+DTCT)
~ / 0	CHER CROUTETHEETHEETHEETHEETHEETHEETHEETHEETHEET

¢

		·
171	B	(29)=VL2*AL2*6(12)*B(18)
172	N	، 1 – ل U = L J
173	N	J(N)=NJJ
174	, H	CH=C(26)*B(13)*DT*B(11)/B(12)+SQRT((C(26)*B(19)*DT*B(11)/B(12))**
175	\$2	+2.*B(23)*DT*B(11)/E(12)*TAN(ASIN(SP2)))
176	н	(NCH + N + 2) = HC H * C(5)/E(16)
177	8	(29)=0.
178	R	ETURN
179	50 D	0 51 N=1. NN
181	c	ALL PREP
181	c	ALL INPT
182	Ċ	ALL UBDY
183	51 0	ONTINUE
184	· N	ENCH
185	Ċ	ALL PREP
186	ī	F(ITYPE.EQ.7) GOTO 59
187	- 6	0 10 4
183	52 D	0 58 N=2•K1
189	, <u>, , , , , , , , , , , , , , , , , , </u>	ALL PREP
190	Ċ	ALL INEDY (1, XX, HH, TT, 2)
191	58 0	ONTINUE
192	N	IEN CH
193	(ALL PREP
194	(ALL UEDY
195	1	TF(NC0-FQ-1) GO TO 53
196	- 	100=1
197	1	/0=0.
192	ſ	0 63 N=2+3
199]	IF(IWET(N).EQ.D.AND.IWET(N-1).EQ.D) GO TO 63
200	· •	(N=(C(22)+DXPG1+DXPG2)/DXRS+1.99999
201	F	CT=DDXCH
2112		KN=FLOAT(N-1) + DXCH
203		XR=TIME*C(30)
204		IF(XN.LT.XR) GO TO 67
205	;	XRN=DXCH-(XN-XR)
206	í	FCT=DDXCH+XRN/DXCH
207	67	00 62 K=2+KN
20.8		X=FLOAT(K-1)*DXRS
209		X1=X-DXRS
210		CALL GEOM(2+A1+H(N+K+1)+P1+T1+D1+1+X)
211		CALL GEOM(2+A2+H(N-1+K+1)+R2+T2+D2+1+1+X)
212		CALL GEOM(2+A3+H(N+K-1+1)+R3+T3+D3+1+1+X1)
213	1	CALL GEOM(2,A4,H(N-1,K-1,1),R4,T4,D4,1,1,X1)
214		IF(K.EG.KN) CALL GEOM(2, A1, HI(N, 1), R1, T1, D1, 1, XX)
215		IF(K.EQ.KN) CALL GEOM(2, 2, HI(N-1+1)+R2+T2+D2+1+1+XX)
216	1	DX1=DXRS
217		IF(K.EQ.KN) DX1=(XI(N.1)+XI(N-1.1)-2.*FLOAT(KN-2)+DXRS)/2.
218		x12=x-Dx1/2.
219		CALL STORM(X12+TIHE)
220		V0=V0+(A1+A2+A3+A4)/4.*DX1 *FCT/C(9)
221	62	CONTINUE
222	63	CONTINUE
223		N=NCH
224		CALL GEOM(2+A1+H(N+1+1)+F1+T1+D1+1+0+)
225		CALL GEOM(2+A2+H(N+2+1)+R2+T2+D2+1+1+DXCH)
226		CALL GEOH(2+A3+HL(N+NJ+1)+R3+T3+D3+1+1+XJ1)
227		V0=V0+(A1+A2)/2.*DXCH/C(5)

. 168

228	V0=V0+(A2+A3)/2.+(XJ1-DXCH)/C(5)
229	60 TO 61
230	53 VO=VT
231	61 XR=(TIME-DT/2.)*((30)
232	VIN=B(32)/B(19) + XR + DT + C(12) + (B(72) + YDC1 + YDC2) + D(72) +
233	\$12)/B(11)
234	VT1=0.
235	D0 56 N=2+NN
236	
237	
238	
239	FCT=DDXCH
240	$X = E [0 + 1] + 0 \times C + 1$
241	
242	
243	
244	
245	
246	
247	
248	
249	
250	
251	CALL CEON(2+AZ+HIN=1+K+Z+RZ+TZ+DZ+1+2+X)
252	CALL CECHI 27 AS THINK T 2 JA 23 1 3 0 3 1 4 2 0 X 1 3
253	TELK 17 KNN 00 TO F
254	
255	\$+0×D5/22
256	CALL CECH/2-A1-UT/N ON DE TE DE LE LEN
257	CALL CECH(2+AI)(N, 2)+R1+11+D1+1+2+XI(N+2))
258	54 V122 Y N 1 22 X 1 (N+1, 2) R 2 V 72 V 22 V 1 (N+1, 2))
259	
260	
261	
262	
263	CALL PREP
264	
265	
266	
267	
268	CALL STORMAY ALTICS
269	CALL STORMARANIME)
270	CALL CEON (2 A A D H (N + K - 1 + 2 + K A + 1 A + 0 A + 1 + 2 + XK 1)
271	VIII VIII (AAAAAAAAAAAAAAAAAAAAAAAAAAAAA
272	54 CONTINUE
273	
274	
275	
276	
277	H(NCH,NN,2) = 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2
278	V(NCH,NN+2) = 2 + V(NCH,NN+1+2) + H(NCH,NN+2+2)
279	H(NCH, NH, 1 X-1047)
280	
281	
282	
283	RETION
284	

. 169

 285
 NN1=NN-1

 286
 D0 60 N=2, NN1

 287
 CALL PREP

 288
 CALL INBDY(1,XX,HH,TT,2)

 289
 60 CONTINUE

 290
 N=NCH

 291
 CALL PREP

 292
 CALL UBDY

 293
 CALL INLET

 294
 RETURN

 295
 END

.

States of the second

.

i70

SUBROUTINE CEOS(VD +DD+ VE +D E+ VP +HP+ XD +XE+D TD +DTE +XP) С SOLVE TWO CHARACTERISTIC EQUATIONS TO OBTAIN VP AND HP COMMON /B1/ B(40)+C(40)+Z(10)+TIME+OFH+NN+N+NCH+RSL+CURVE COMMON /B3/ NK(27),NJ(27),DX,DT,DIST,HMIN,VMIN,ITYPE,IO,OC(27,10), \$ S. DS COMMON/84/II(27.2),XI(27.2),HI(27.2),VI(27.2),QI(27.2),WI(27.2), \$CT (27,2) + CH(27,2) + CV(27,2) COMMON /B5/ NG(27+27)+SG(27+27)+FG(27+27)+NF+SF+FF COMMON/B6/AA1,BB1,CC1,SNK, IDG,SP1,XPG1,SP2,XPG2 COMMON /B7/ NL(27+10)+NR(27+10)+SL(27+10)+SR(27+10)+FL(27+10)+ \$FR (27+10) + NFJ + SFJ + FFJ COMMON /B8/ ACCU+ACCUX+ACCUY+HDRY+CC COMMON/B16/AAA, 388.CCC.TD.RTO.RMN.RAV CALL RAIN(3.TIME) KP=XP/DX+1.99999 IF(IDG.EQ.1.AND.N.EQ.NCH) CTMIN=HMIN+B(16)/C(5)/TAN(ASIN(SP2))/B(1 \$0) С CD AND CE ARE ENERGY COEFFICIENTS AT POINTS D AND E CD=1. CE=1. NF=D IF (DD.LT.HDRY.OR.DE.LT.HCRY) HP=HDRY IF (DD. LT. HDRY.OR. DE. LT. HDRY) GOTO 5 CALL GEOM(5+AD+HD+RD+CTD +DD+1+1+XD) CALL GEOM(5+AE+HE+RE+CTE+DE+1+1+XE) TIM=TIME-DTD CALL STORM(XD.TIM) CALL OPHEAD CALL FRIC(VD.HD.FD.RD.RED.REC.IRD.1.XD) SFD=C(4) +FD+VD+ABS(VD)/(E(13)+RD) IF(ABS(XE-XD).LT.ACCUX) SFDE=C(8) IF (ABS (XE-XD) .LT.ACCUX) GOTO 8 7 SFDE=C(8)+(B(16)*(HD-HE)/C(5)+B(12)**2*(CD*VD*VD+CE*VE*VE)/64.4)/ \$((XE-XD)+8(11))+C(9) 8 IF(ABS(SFD).LT.ABS(SFDE)) GOTO 12 9 SFD=SFDE NF=1 12 DSQ=SQRT(C(1)+(C(1)-1.)* V0 *VD+C(1)*C(20)*(DD*C(9)/C(5)+OPH)) A1=((1.-C(1))*VD+DSQ)*C(9)/C(5)/DD C7=C(7)+DTD/DTSFD=(SFD+SFDE)/2. C1=C(11) *DTD* (C(1) *C(2B) *(C(8) -SFD)+C(26) /DD*C(19)*(C7*C(25)*C(6) \$/C(9)-C(1)*VD+DSG)*C(9)*C(5)+C(27)*C(19)/DD*(C(1)*VD-DSQ)* \$C(9) *C(5)+C(29)/CTD/D9*(C(3)*C(2)*C(24)-C(1)*VD+DSQ)*B(16)/B(10) \$)+HD +A 1+ VD TIM=TIME-DIF CALL STORMIXE . TIM) CALL OFHEAD CALL FRIC(VE, HE, FE, REFREE, REC, IRE, 1, XE) SFE=C(4)*FE+VE*ABS(VE)/(8(13)*RE) IF(ABS(XE-XD).LT.ACCUX) SFDE=C(8) IF(ABS(XE-XD).LT.ACCUX) COTO 18 17 SFDE=C(8)+(B(16)*(HD-HE)/C(5)+B(12)**2*(CD*VD*VD+CE*VE*VE)/64.4)/ \$((XE-XD) *B(11))*C(9) 18 IF(ABS(SFE).LT.ABS(SFDE)) GOTO 22 19 SFE=SFDE

1 2

3

4

5

6

7

8

9

10

11

12

13 14

15

16

17

18

19

20

21

22

23

24

25

26 27

28

29 30

31

32 33

34

35

36 37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53 54

55

56

57		NF=1 *
58	22	ESQ=SQRT(C(1)+(C(1)-1.)*VE+VE+C(1)*C(20)*(DE*C(9)/C(5)+CPH))
59		A2 = ((1 - C(1)) * VE - ESQ) * C(9) / C(5) / DE
60		C7=C (7) * DTE/DT
61		SFE=(SFE+SFDE)/2.
62		C2=C(11)*DTE*(C(1)*C(20)*(C(8)-SFE)+C(26)/DE*C(19)*(C7*C(25)*C(6)
63		\$/C(9)-C(1)*VE-ESQ)*C(9)*C(5)+C(27)*C(19)/DE*(C(1)*VE+ESQ)*
64		\$C(9) +C(5)+C(29)/CTE/DE+(C(3)+C(2)+C(24)-C(1)+VE-ESQ)+B(16)/B(10))
65		\$+HE*A2+VE
66 .		HP=(C1-C2)/(A1-A2)
67		VP = (A1 + C2 - A2 + C1) / (A1 - A2)
68		SFP=(SFD+SFE)/2.
69		IF(SFP.GT.QAND.VP.LT.Q.) VP=(VD+VE)/2.
70	5	CALL STORM(XP,TIME)
71		SF0=C(8)
72		IF(SF0.GT.D.) GOTO 37
73		cc=p.
74		GOTO 38
75	37	CC=C(36)*SF0**C(37)
76	38	IF(CC.LT.24.) CC=24.
77		QFLOW=VP+B(12)+HP+B(16)/C(5)
78		QRAIN=RMN/43200. *XP*E(11)
79		IF (N.NE.NCH.AND.GFLOW.GT.1.10+GRAIN) GOTO 30
80		IF (IDG.EG.1.AND.N.EQ.NCH.AND.HP.LE.HMIN) GOTO 39
81		6010 27
82	39	HP=HMIN
83		CT (KP+2)=CTMIN
84		CALL GEOM(2+AP+HP+RP+CTP+DP+1+2+XP)
85		VP=SF0+257.6*RP+RP+B(17) ** 2/(CC+B(24)+B(12))
86		CALL FRIC(VP,HP,FP,RP,REP,REC,IRP,2,XP)
87	26	FF=FP
88		SF=C(4)*FP*VP*ABS(VP)/(B(13)*RP)
89		FFJ=FF
90		SFJ=SF
91		NF J=NF
92		RETURN
93	27	IF (HP.LE.HORY) HP=HDRY
94		CALL GEOM(2+AP+HF+RP+CTP+DP+1+2+XP)
95		IF(RP.LE.B(2)*C(23).AND.XP.LT.DIST) VP=SF0*257.6*RP*RP*B(17)**2/
96	1	\$ (CC+B(24)+B(12))
97		CALL FRIC(VP+HP+FP+RP+REP+REC+IRP+2+XP)
98		IF (N.EQ.NCH.OR.IRP.NE.6) GOTO 25
99	30	IF(SF0.LE.D.) GOTO 28
100		HMAX = (CC+B(24)+RMN+XP+B(11)/(257.6+43200.+SF0))++(1./3.)+C(5)/B(16
101	1	\$ }
102		6010 29
103	28	HMAX=RMN/4320D.*TIME+B(11)/B(12)+C(5)/B(16)
104	29	IF (HP.GT.HMAX) HP=HMAX
105		VMAX =RMN/43200.*XP+B(11)/(HP+B(16)/C(5))/B(12)
106		IF (VP.GT.VMAX) VF=VMAX
107		CALL GEOM(2+AP+HP+RP+CTP+DP+1+2+XP)
108		CALL FRIC(VP+HP+FP+RP+REP+REC+IRP+2+XP)
109		6010 26
110		END

;

÷

1			SUBROUTINE CONJ(XJ2, J, VLL, HLL, VRR, HRR, S)		
2	С		EVALUATE THE CONJUGATE DEPTHS AND VELOSTITES OF T	HE DISCO	NTTHUTT 2
3	· · · ·		COMMON /81/ 8(40) + C(40) + Z(10) + TTMF + OPH + NN + N + N CH + P	SI . CHEVE	WILLWOLL (
4			COMMON /B2/ H(27,27,2) +V(27,27,2) +H1 (27,10,2) +HR	27.10.21	-
5		1	WR (27, 10, 2), VL (27, 10, 2), VJ(27, 10, 2), YJ(27, 10, 2), J	T127.27.	7) - K N - N 11
6			COMMON /B3/ NK(27) +N.11 27 1+ DX +DT + DT 5T +HM TN +V HT N. TT	YPE-TO-0	217N N FNUJ
7				16 7 10 40	
8			COMMON /B7/ NI (27. 10). NR (27. 10). SI (27. 10) . SP(27.1	01.51/27	101
9			FR 127.10) • NEJ. SEJ. FEJ	UT#FE(27	*101*
10	•		K=XJ2/DX+1_99999		
11			CALL STORMLY.12.TTMEL		
12			CALL OPHEAD		
13			CALL GEOMIZAN AHI (No 10 1) DL THE DE THE VIEW AND A		
14			CALL GEOMIZEAR + HR (No. 10 1) - R Po TD - DD - 1 - 1 - Y (I No. 1. 1.)	,	
15			TE (AL GT_AR) GO TO 3		
16			CALL JI (XJ2+J+VI + HIL+ \$1 7-11		
17			NL(N+J)=NFJ	•	
18			SL(N-J)=SFJ		•
19			F1 (N•J)=FFJ		
20			CALL JR1 (XJ2+J+VII +HIL +V EP +HPD +#17)		
21			RETURN		
22		3	CALL JR(XJ2+J+VRR+HRR+\$13+1)		
23					
24			SR(N+J)=SFJ	· ·	
25			FR(N,J)=FFJ		
26			CALL JE1 FX. J2 + J+VII +HIL +VPD + HDD + #171		
27			RETURN		
28		13	RETURN 7		
29			END		

1.			SUBROUTINE CRISEC
2	C		LOCATE CRITICAL SECTIONS, IF ANY
3			COMMON /B1/ B(4D).C(4D).7(1D).TTMF.OPH.NN.N.N.CH.RSt.CURVF
4			COMMON /62/ H(27+27+2)+V(27+27+2)+H(27+10+2)+HR(27+10+2)+
5			\$VR (27 · 10 · 2) · VI (27 · 10 · 2) · VI (27 · 10 · 2) · YI (27 · 10 · 2) · IT (27 · 27 · 2) · KN · N H
ã			$\begin{array}{c} COMMON \ / Re^{-1} / Re^{-1} / Re^{-1} \\ COMMON \ / Re^{-1} / Re^{-1} / Re^{-1} \\ COMMON \ / Re^{-1} / Re^{-1} / Re^{-1} \\ Re^{-1} / Re^{-1} \\ Re^{-1} / Re^{-1} \\ Re^{-1} / Re^{-1} / Re^{-1} \\ Re^{-1} / Re^{-1} / Re^{-1} \\ Re^{-1} / Re^{-1} \\ Re^{-1} / Re^{-1} \\ Re^{-1} / Re^{-$
7			CONDC / DO/ ARTZI/ARGIZ/ARDADIADIS/ARHINAATIATI PEATOAGCZ/ATD/A
			TONNON PECKAAL DDI OOI ENK IND EDI VOON 'EDE VOON
8			COMMUN/56/AA1,881,001 SNK 1DG, SP1, XP61,5P2, XP62
9			COMMON 7387 ACCU+ACCOX+ACCOY+HDRY+CC
10			KNM=KN
11	-		IF(N.LT.NCH.AND.IDG.EG.1) KNM=KN-1
12			DO 9 K=2 + KNM
13			IF(JI(N+K+2)+GT+0) GO TO 9
14			IF(H(N+K+2)+LT+HDRY+2+) 60 TO 9
15			KA=K-1
16			IF(H(N+KA+2)+LT+HORY+2+) 60 TO 9
17			X=FLOAT(KA)+DX
18			CALL STORM (X + TIME)
19			CALL OPHEAD
20			
21			
22			$\mathbf{A} = \mathbf{V} \cdot \mathbf{A} + \mathbf{V} \cdot \mathbf{A} + $
27			
23			rkb-rkisitvs/bs/0PH/ttl/tt/tt/tt/st
24		-	1F (FRB)9 +2 +3
25		2	XCR=X
26		_	60 10 4
27		3	X1=X-DX
2.8			CALL STORM(X1.TIME)
29			CALL OPHEAD
30			CALL GEOM(2+AA+H(N+KA+2)+RA+TA+DA+1+2+X1)
31			FRA=FRTST(VA+DA+OPH+C(1)+C(5)+C(9)+C(20)+1)
32			IF(FRA.GTACCU) GO TO 9
33			NCT=0
34			XCR1={ X+ X1 }/2.
35		5	CALL STORM(XCR1+TIME)
36			CALL OPHEAD
37			A1=((VB-VA)/DX)**2
38			IF(A1.LT.ACCU) GO TO 9
39			B1=2 + VA + (VB - VA) / DX - (DB - DA) + C(2D) / DX + C(3) / C(5)
40			C1 = VA + +2 = C(2D) + (DA + C(3)) + (C(5) + OPH)
41			DX(R=(-R)+S(RT(R)+R)-4+A(+C(1))/(2+A))
42			
74 h 7			
1.5			
77 15			
43		100	TRUCTOGIZUT WRITERSTUUT XIIX
46		100	FORMATIC NO CRITICAL SECTION SOLUTION BETWEEN SECTIONS + F7.4, * A D
41		*	
48			1F(NCI_6(1+2U) GOTO 9
49			XCRI=XCR
50			G010 5
51		4	WRITE(6+200) XCR
52		200	FORMAT(* CRITICAL SECTION LOCATES AT X=*+F7.4)
53		9	CONTINUE
54			RETURN
55			END

• .'	C C C C	SUBROUTINE CROSS(XB+J+ID+VV+DD+DXX+DTT+CS) ' CALCULATE THE VALUE OF V AND H AT A POINT ON THE PATH OF DISCONTI UITY IN THE X+T-PLANE WHEN A DISCONTINUITY CROSSES THE GRID POINT ID=1 ON REGION *R* OF THE DISCONTINUITY ID=2 ON REGION *L* OF THE DISCONTINUITY COMMON /91/ B(4U)+C(40)+Z(10)+TIME+OPH+NN+N+NCH+RSL+CURVE COMMON /92/ H(27+27+2)+V(27+27+2)+HL(27+10+2)+HR(27+10+2)+ \$VR(27+10+2)+VL(27+10+2)+VJ(27+10+2)+XJ(27+10+2)+J(27+2)+KN+NJ COMMON /B3/ NK(27)+NJ(27)+DX+DT+DIST+HMIN+VMIN+ITYPE+I0+OC(27+10)+ \$\$S+DS
		COMMON /B8/ ACCU+ACCUX+ACCUY+HDRY+CC
		DIMENSION T(2),F(2)
	•	IF(ID.EQ.2) GO TO 1
		XB2= XB - XJ(N, J, 2)
		XB1=XB-XJ(N+J+1)
		$\frac{1}{1}$
		$CALL CEDH(2, A, U) \rightarrow T = 2 $
		CALL SECONDARY AND THE SECONDARY (1, 10, 1, 1, 1, XB)
		\$*(D)*((9)((5)*(0))*(0))*(0)(2)*(C(1)*(C(1)*(0))*(0))*(0)(2)
		IF (ABS(F(T)), T-AC(T) PETION
		IF(I_FG_2) GO TO 4
		I=2
		T(2) = T(1) + 0 - 1 + 0 T
		GO TO 3
		4 NCT=NCT+1
		IF(NCT.GT.20) SS=S QR T(-1.)
		TT = (F(1) * T(2) - F(2) * T(1)) / (F(1) - F(2))
		T(1)=T(2)
		, T(2)=TT
		F(1)=F(2)
		60 TO 3
		END

;

÷

1		SUBROUTINE CROWN
2	C	FORMULATE THE EQUATION OF THE TRANSVERSE PROFILE OF A ROAD SURFACE
3	•	COMMON /B1/ B(40) · C(40) · 7(10) · TIME · OPH · N · N · N · CH · R SI · CURVE
b.		COMMON /B2/ H(27.27.2) .V(27.27.2) .H(27.10.2) .HB(27.10.2).
5	•	
5		
5		
<u> </u>		
8		COMMON / BIG/ DARS+DDACH+DDARS
9		DIMENSION Y(3)+G(2)
.U		DATA G/* CURB·•·CHANL·/
.1		READ(5+100)NL+1DG+(T(1)+1=1+3)+SUPEL+TRFCT+SPEED
.2		100 FORMAT(215+6F10+0)
.3	C.	NL THE NUMBER OF TRAFFIC LANES
.4	С	IDG INDICATE THE TYPE OF GUTTER
.5	С	1 CURB TYPE
6	C	2 CHANNEL TYPE
.7	С	SUPEL=SUPERELEVATION+FT FER FT OF ROADWAY WIDTH
8	С	TRFCT=SIDE FRICTION (CORNERING RATIO) BETWEEN TIRES AND ROAD SURF.
9	С	SPEED=DESIGN SPEED FOR ROADWAY, MILES PER HOUR
0	С	RADIUS=RADIUS OF CURVATURE OF ROADWAY
1		READ(5,101) SP1+XPG1,SP2,XPG2
2	С	SP1=CROSS SLOPE OF PAVED SHOULDER (3 TO 5 PERCENT)
:3	С	XPG1=HORIZONTAL WIDTH OF PAVED SHOULDER (12 FT, 4 FT, OR 2FT FOR E
4	С	ACH LANE)
:5	С	SP2=CROSS SLOPE OF GUTTER OR MEDIAN (1/12 OR 10 PERCENT)
6	C	XPG2=HORIZONTAL WIDTH OF GUTTER OR MEDIAN (3 FT OR {12-2*NO• OF
27	С	LANES) FT)
8		101 FORMAT(8F18-8)
9		IF(CURVE.LT.0.1E-5) COTO 2
0		RADIUS=0.067*SPEED*SPEED/(SUPEL+TRFCT)
1		CURVE=1./RADIUS
2		WRITE(6,150) SUPEL +TRFCT +RADIUS+CURVE+SPEED
53		150 FORMAT(/ THIS IS A CURVED ROADWAY WITH SUPERELEVATION = ",F5.3,"
54		\$(FT/FT).SIDE FRICTION = ".F5.3." RADIUS OF CURVATURE = ".F10.2." (
5		SFT)*/* AND CURVATURE = *,E8.3,* (RADIANS) FOR DESIGN SPEED = *,F5.
56		\$1, (MPH))
57		2 NK1EMP=NL+12/1NT(BDXRS+0.001)+1
8		3 AA1=(Y(3)-2.*Y(2)+Y(1))/288.
59		BB1= (- Y(3) +4. *Y(2) -3.*Y(1))/24.
υ ·		
1	-	10 TAN=-(2.*AA1*+LOAT(NKTEMP-1)*DDXRS+BB1)
Z	C	SNK-BED SLOPE AT THE END OF OVERLAND FLOW ON ROADWAY
3		
4		SNK-SIN(THETA)
5		KN=NKIEMP+INI((XFGI+XFG2)/DDXRS+U-39393)
0		
10		
19 10		
1		
(~ (~		32 TF(SP2.) T_SD11 SP2TSD1
in i		
5		12 WRITE(6.200) NL.6(TOG).(Y(T).6.21.3)
56		200 FORMAT(/12.* TRAFFIC LANES HIGHWAY WITH *.AG. TYPE GUTTER FLOW*/

. 176

\$' Y(1)='*F5.3*' Y(2)='*F5.3*' Y(3)='*F5.3) WRITE(6*202) SP1*XPG1*SP2*XPG2 202 FORMAT(' SP1 = **F6.4*' XPG1 = '*F8.3*' SP2 = **F6.4*' XPG2 = ** 8 *.3) WRITE(6*203) AA1*BB1*CC1*SNK 203 FORMAT(/' THE COEFFICIENTS OF CROWN CURVE EQUATION ARE:*/ \$' A = *F9.6*' B = **F9.6*' C = **F9.6*' SNK = **F9.6} RETURN END

57 58

59 60

61

62 63 64

65

• 177 ;

.

1			SUBROUTINE CS (SS + X 1 + X2 + X C + XP + D 1 + D2 + D C + V1 + V2 + VC)
2.		C	COMPUTE D.V.AND LOCATION OF C+ OR C- CHARACTERISTIC CURVE
3	(C	SS=+1. FOR C+
4	. (Ċ	SS=-1. FOR C-
5			COMMON /B1/ B(40),C(40),Z(10),TIME,OPH,NN,N,NCH,RSL,CURVE
6			COMMON /B3/ NK(27) +NJ(27) + DX + DT + D IST + HM IN + V MTN + IT YPE + IO + OC(27 + 10) +
7		•	\$S, DS
8			COMMON /B8/ ACCU+ACCU+ACCU+HDR+CC
9	•		COMMON /B12/ NDEPTH
10			DIMENSION F(2) +X(2)
11			C1 = D1/(X2 - X1) + C(9)
12			$(2 = (x_2 - x_P)/(x_2 - x_1))$
13			NCIED
14			NDFPTH=n
15			
16		r	1-1 V(1)-(V2-V()/(V2-V1), VC-V 2-V(1)+(V2-V1)
17		6	
18		1	
19		*	
20			
21			
2 + 7 2			TE(TTMPE, E0.2, 0.0)
~ L 7 7			
23		7	TELDELT OL NOEDTH-1
27 25		5	$\frac{1}{1000} = \frac{1}{1000} + 1$
25		5	
20		5	
28			
29			TE(ABS(F(T)) + T, AC(T)) = DETTAN
รัก			
30			
32			
33			$T = (A \cap S \cap $
34			Y = [1] + [2] + [2] + [1] + [1] + [1] + [2] +
35			
36			
27 77			TF LARS (Y (1) - Y (2)) = 1 T ACCUL O FTUDN
39 38			
7 Q			
55 40		2	
41'		2	
42			
47		þ	TF(ABS(F(T)), GT, (TF-4), WRITE(6, 200), F(T))
- J - L		200	$\sum_{i=1}^{n} (i \in \{1, i\}, i \in \{1, i\}, i \in \{1, i\}, i \in \{1, j\}, i \in$
45		200	
			5.0 P

;

SUBROUTINE DBDY C SET UP DOWMSTREAM BOUNDARY CONDITION COMMON /B1/ B(40) .C(40),Z(10).TIME.OPH.NN .N.NCH.RSL.CURVE COMMON /B2/ H(27 .27.2) .V(27.27.2) .HL(27.10.2).HR(27.10.2). \$ VR (27+10+2)+VL(27+10+2)+VJ(27+10+2)+XJ(27+10+2)+JI(27+27+2)+KN+NJJ COMMON /B3/ NK(27) +NJ(27)+DX+DT+DIST+HMIN+VMIN+ITYPE+I0+0C(27+10)+ \$S.DS IF(ITYPE.NE.1.AND.N.EQ.1) GO TO 90 KN1=KN-1 IFINJJ.EQ.01 GO TO 5 DO 1 JJ=1.NJJ J=NJJ--JJ+1 IF(XJ(N+J+2), GT.DIST-DX. AND.XJ(N+J+2).LT.DIST) GO TO 2 **1 CONTINUE** 60 TO 5 2 JI(N,KNv2)=1 5 IF(JI(N.KN.1).EQ.1) GO TO 20 IF(JI(N.KN,2) EQ.1) GO TO 10 DX1=DIST-FLOAT(KN-2)*DX CALL DPY (H(N+KN+1) +V(N+KN+1) +H(N+KN1+1)+V(N+KN1+1)+H(N+KN1+2)+ \$V(N.KN1.2).DX1) RETURN 10 X=DIST-X J(N+J+2) H2=H(N .KN.1) + (H(N. KN 1. 1) -H(N.KN.1))+ X/DX V2=V(N+KN+1)+(V(N+KN1+1)-V(N+KN+1))*X/DX 15 CALL DPT(H(N,KN,1),V(N,KN,1),H2,V2,HR(N,J,2),VR(N,J,2),X) RETURN 20 IF(JI(N+KN+2) .EG .0) GO TO 22 X=DIST-XJ(N+J+2) IF(J.LT.NJJ) GO TO 21 X1=DIST-XJ(N,J,1) H2=H(N •KN+1)+(HR(N+J+1)-H(N+KN+1))+X/X1 V2=V(N+KN+1)+(VR(N+J+1)-V(N+KN+1))+X/X1 GO TO 15 21 X1=DX-(DIST-XJ(N NJJ 01)) H1=H(N .KN1 .1) +(HL(N.NJJ. 1) -H(N.KN1 .1)) +DX/X1 V1=V(N+KN1+1)+(VL(N+NJJ+1)-V(N+KN1+1))+DX/X1 H2=H(N•KN1+1)+(HL(N•NJJ+1)-H(N•KN1+1))*(DX-X)/X1 V2=V(N+KN1+1)+(VL(N+NJJ+1)-V(N+KN1+1))+(DX-X)/X1 CALL DPT(H1+V1+H2+V2+HR(N+J+2)+VR(N+J+2)+X) RETURN 22 IF(VJ(N.NJJ.1).LT.D.) GO TO 23 H1=H(N•KN1v1)+(HL(N•NJJo 1)-H(N•KN1o1))+DX/(DX-DIST+XJ(N•NJJ•1)) V1=V(N •KN1 •1) +(VL(N•NJJ • 1) --V(N•KN1 •1)) + DX/(DX-DIST+XJ(N•NJJ•1)) CALL DPT(H1. VI.+H(N.+KN1.+1)+V(N+KN1.+1)+H(N+KN1.+2)+V(N+KN1.+2)+DX) RETURN 23 H2=H(N+KN+1)+(HR(N+NJJ+1)-H(N+KN+1))*DX/(DIST-XJ(N+NJJ+1)) V2=V(N+KN+1)+(VR(N+NJJ+1)-V(N+KN+1))+DX/(DIST-XJ(N+NJJ+1)) CALL DPT(H(N • KN • 1) • V(N • KN • 1) • H2 • V2 • H(N • KN 1 • 2) • V(N • KN 1 • 2) • DX) RETURN 90 H(N+KN+2)=H(N+KN+1) V(N+KN+2)=V(N+KN+1) RETURN

END

1

2

3

4 5

6

7

8

9 10

11

12

13

14

15

16 17

18

19

20

21 22

23

24

25

26

27

28

29 30

31

32 33

34

35 36

37

38

39

40

41

42

43 44

45

46

47

48

49

50 51

52 53

54

SUBROUTINE OPT(H1.V1.H2.V2.H3.V3.X) С COMPUTE V AND H AT THE DOWNSTREAM GRID POUNT COMMON /B1/ B(40), C(40), Z(10), TIME, OPH, NN +N +N CH +R SL + CURVE COMMON /82/ H (27+27+2) +V (27+27+2) +HL (27+10+2) +HR (27+10+2)+ \$VR(27+10+2)+VL(27+10+2)+VJ(27+10+2)+XJ(27+10+2)+JI(27+27+2)+KN+NJJ COMMON /B3/ NK(27) +NJ(27)+DX+DT+DIST+HMIN+VMIN+ITYPE+I0+0C(27+10)+ \$S+DS COMMON/84/II(27,2),XI(27,2),HI(27,2),VI(27,2),QI(27,2),HI(27,2), \$CT(27+2)+CH(27+2)+CV(27+2) COMMON / 25/ NG(27+27)+ SG(27+27)+ FG(27+27)+ NF+ SF+FF COMMON/86/AA1+881+CC1+SNK+IDG+SP1+XP61+SP2+XP62 COMMON /B8/ ACCU+ACCUX+ACCUY+HDRY+CC DIMENSION HH(2),F(2) IF (IDG.EQ.1.AND.N.EG.NCH) CTMIN=HMIN+B(16)/C(5)/TAN(ASIN(SP2))/B(1 \$01 TIM=TIME-DT CALL STORM(DIST, TIM) CALL OPHEAD CALL GEOM(2+A1+H1+R1+T1+D1+1+1+DIST) X1 =DIST-X CALL STORM(X1.TIM) CALL OPHEAD CALL GEOM (2+A2+H2+R2+T2+D2+1+1+X1) CALL STORM(X1.TIME) CALL OPHEAD CALL GEOM(2+A3+H3+R3+T3+D3+1+2+X1) FRN3=FRTST(V3+D3+0FH+C(1)+C(5)+C(9)+C(20)+1) IF (FRN3.LE.U.) GOTO 9 CALL CS(1.,X1.DIST,XD.DIST.D2.D1.DD,V2.V1.VD) CALL CS(-1.,X1.DIST.XE.DIST.D2.D1.DE.V2.V1.VE) FOR SUPERCRITICAL FLOW С CALL CEGS(VD+DD+VE+DE+V(N+KN+2)+H(N+KN+2)+XD+XE+DT+DT+DIST) NG(N+KN)=NF FG(N.KN)=FF SG(N.KN)=SF HCH=H(N.KN.2) IF (N.EQ.NCH.AND. NK (NN).GT. 2. AND.IDG.EQ.1) CALL INBDY (2.DIST. HCH.T. \$2) CALL STORM(DIST, TIME) CALL GEOM(2+A+H(N+KN+2)+E+T+D+1+2+DIST) FRN=FRTST(V(N+KN+2)+D+OPH+C(1)+C(5)+C(9)+C(2D)+1) IF (FRN.GT.U.) RETURN С FOR SUBCRITICAL FLOW, OV REFALL CONDITION CONTROL THE H AND V S CALL STORM(DIST, TIM) (9)2=0(9) C26=C(26) C27 = C(27)C29=C(29)CALL STORM(X1,TIM) 09=0(9)+09C26=C(26)+C26 C27=C(27)+C27 029=0(20)+029 CALL STORM(X1,TIME) CALL GEOM (2+A3+H3+R3+T3+E3+1+2+X1) 09=0(9)+09

:

1

2

3

4

5

6

7

8

9

10

11

12

13 14

15

16

17

18

19

20

21

22

23

24

.25

26

27

28

23

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

43

49

50

51

52

53

54

55

56

57 C26=C(26)+C26 58 C27=C(27)+C27 59 C29=C(29)+C29 CALL STORM(DIST+TIME) C9=(C(9)+C3)/4. 60 61 62 C26=(C(26)+C26)/4. 63 C27=(C(27)+C27)/4. 64 C29=(C(29)+C29)/4. 10 I=1 65 66 NCT=0 67 HH(1)=H1 11 IF(N.EG.NCH.AND.IDG.EQ.1.AND.HH(I).LT.HMIN) HH(I)=HMIN: 68 69 IF(HH(I).LT.HORY) HH(I)=HDRY 70 H(N+KN+2)=HH(I) 71 IF (N.EQ.NCH.AND. W (NN).GT.2.AND.IDG.EQ.1) CALL INEDY(2.DIST.HH(I), 72 \$TTT+21 73 IF (N.EQ.NCH.AND.IDC.EQ.1.AND.HH(I).LE.HMIN) CT(NN.2)=CTMIN 74 CALL GEOM(2+A+HH(I)+R+T+D+1+2+DIST) CALL STORM(DIST.TIME) 75 76 T=(T1+T2+T3+T)/4. 77 RIQL=B(11)*(T*B(10)*C3*(C26-C27)*C(19)/B(18)+C29/(B(10)*C(5))) 78 VV=SQRT(C(2U)*(D*C(9)/C(5)+OPH)) 79 F(1)=A3-A2+A-A1+DT/X*(V1 *A 1-V2*A2+VV *A-V3*A3)*C 9 -2.*DT*RIGL 80 IF(ABS(F(I)).LT.ACCU) GO TO 13 81 IF(I.EQ.1) GO TO 12 82 IF(ABS(F(1)-F(2)).LT.ACCU*ACCU)G0 TO 13 83 NCT=NCT+1 84 IF(NCT.GT.20) GO TO 20 85 HHH=(F(1)+HH(2)-F(2)+HH(1))/(F(1)-F(2)) 86 HH(1)=HH(2) 87 HH(2)=HHH 88 F(1) = F(2)89 GO TO 11 90 12 I=2 91 HH(2)=H3 92 GO TO 11 93 20 SSS=-1. WRITE(6,100) N 100 FORMAT(* NO SOLUTION AT THE DOWNSTREAM END OF SECTION*.13) 94 95 96 IF (N.EQ.NCH) GO TO 13 97 IF(A9S(F(I)).GT.0.1E-4) SS=SQRT(SSS) 38 13 H(N,KN,2)=HH(I) 99 V(N+KN+2)=VV 100 NG(N+KN)=2101 CALL GEOM(2+A+H(N+KN+2)+P+T+D+1+2+DIST) 102 CALL FRIC(V(N+KN+2)+H(N+KN+2)+FF+R+REC+IR+2+DIST) 103 EG(N•KN)=EE 104 SG(N+KN)=C(4)+FF+V(N+KN+2)+ABS(V(N+KN+2))/(B(13)+R) 105 RETURN 106 END

SUBROUTINE ERR(ID) С COMPUTE THE COMPUTATIONAL ERROR COMMON /B1/ B(40)+C(40)+Z(10)+TIME+OPH+NN+N+NCH+RSL+CURVE COMMON /B2/ H(27+27+2)+V(27+27+2)+HL(27+10+2)+HR(27+10+2)+ \$VR(27+10+2)+VL(27+10+2)+VJ(27+10+2)+XJ(27+10+2)+JI(27+27+2)+KN+N J COMMON /B3/ NK(27) +NJ(27) +DX+DT+DIST+HMIN+VMIN+ITYPE+I0+OC(27+10)+ \$S.DS COMMON /B4/ II(27,2) •XI(27,2) •HI(27,2) •VI(27,2) •QI(27,2) •WI(27,2) \$CT(27,2) + CH(27+2) + CV(27+2) COMMON /B8/ ACCU, ACCUX, ACCUY, HDRY, CC COMMON /B10/ DXCH+DXRS+DDXCH+DDXRS COMMON /B14/ IWET(27) CCMMON /B15/ VO1.VT1.VIN 1. VOUT1 DATA TTTT/-1./ DATA VIN, VOUT + VO, VT+ ER 1/0. +0.+0.+0.+0./ C VO=ACCUMULATED VOLUME OF WATER RETAINING ON THE GROUND AT NT=1 С VT=ACCUMULATED VOLUME OF WATER RETAINING ON THE GROUND AT NT=2 VIN-ACCUMULATED VOLUME OF WATER FLOWING IN FROM THE UPSTREAM END: F C GUTTER PLUS LATERAL INFLCW INCLUDING RAINFALL AND INFILTRATION 19 С С VOUT=ACCUMULATED VOLUME OF WATER FLOWING OUT FROM THE DOWNSTREAM END OF GUTTER С ID=INDEX FOR OPTION OF COMPUTING ERROR С 23 С COMPUTE ASSUMED INTIAL VOLUME OF WATER RETAINING ON THE 1. С GROUND ONLY С 21 COMPUTE INFLOW. OUTFLOW. AND FINAL VOLUME OF WATER RETAIN-С ING ON THE GROUND FOR ITYPE 3 ADVANCING WAVE PROBLEM For Itype 2 Advancing wave problem С 3. С 4, NS=NCH+1 29 30 GOTO (41.11.21.31).ID 31 41 IF(ITYPE.E0.1) GOTO 1 IF(ITYPE.EQ.3) GO TO 30 IF(ITYPE.EQ.5) GO TO 1 33 RETURN 30 N=1 36 CALL PREP XJ2=XJ(N+NJJ+1)/2. CALL STORM(XJ2,TIME) CALL GEOM(2+A1+H(N+1+1)+F1+T1+D1+1+1+0.) 39 40 CALL GEOM(2+A2+HL(N+1+1)+R2+T2+D2+1+1+XJ(N+NJJ+1)) 41 V0=(A1+A2) *XJ(N,NJJ,1) *B(21)/2.*B(15)/B(18)/C(9) V01=V0/B(21)/E(16)*B(18) 42 RETURN 43 1 DO 25 N=1+NS FCT=1. IF(N.LT.NCH) FCT=DDXCH+B(16)/B(18) 46 IF(N.EQ.1.OR.N.EQ.NN) FCT=DDXCH/2.+8(16)/8(18) IF(N.EQ.NS) FCT=B(21)+B(16)/B(18) 49 IF(NN.EQ.1) FCT=1. 50 CALL PREP 51 IF(KN.LE.2) GOTO 40 DO 10 K=2+KN 53 DX1=DX 54 H2=H(N+K+1) 55 X=FLOAT(K-1)*DX IF(N.EQ.NCH.OR.K.LT.KN) 00 TO 9

5

1 2

3

L 5

6 7

> 8 9

10

11 12

13

14

15

16 17

18

20

21

22

24

25

26

27

28

32

34 35

37

38

44 45

47

48

52

56

IF(NN.EQ.1) GO TO 9 IF(N.LT.NCH) H2=HI(N.1) $X = XI(N \cdot 1)$ DX1=XI(N+1)-AINT(XI(N+1)/DX)+DX 9 IF(H(N+K-1+1)+LT+HORY+1+01+AND+H2+LT+HORY+1+01) 60 TO 10 X1=X-DX1 2 IF(JI(N+K+1).EQ.1) GO TO 4 3 X12=(X+X1)/2. CALL STORM(X12+TIME) CALL GEOM(2, A1, H(N,K-1,1), R1, T1, D1, 1, 1, X1) CALL GEOM(2+A2+H2+R2+T2+D2+1+1+X) V0=V0+(A1+A2)/2./C(9)*DX1*FCT 60 TO 10 4 J=1 H1=H(N+K-1+1) 5 D0 6 JJ=J.NJJ IF(XJ(N+JJ+1).GT.X1.AND.XJ(N+JJ+1).LE.X) GOTO 7 6 CONTINUE X2=X H2=H(N+K+1) IF(NN.EQ.1) GO TO 8 IF(N.LT.NCH.AND.K.EQ.KN) H2=HI(N+1) GO TO 8 7 X2=XJ(N+JJ+1) H2=HL(N,JJ,1) 8 X12=(X1+X2)/2. CALL STORM(X12+TIME) CALL GEOM(2: A1 + H1 + R1 + T1 + D1 + 1 + 1 + X1) CALL GEOM(2+A2+H2+R2+T2+D2+1+1+X2) V0=V0+ (A1+A2)/2./C(9)* (X 2-X1)*FCT IF(X-X2.LT.ACCU) GO TO 10 X1=X2 H1=HR(N, JJ.1) J=JJ+1 60 TO 5 **10 CONTINUE** 40 IF(NN.EQ.1) RETURN **25 CONTINUE** RETURN 11 VT=0. VIN2=0. IF(ITYPE.EQ.3) GO TO 35 N=NCH KX=NN IF(NN.EQ.1) N=1 IF(NN.EO.1) KX=KN CALL GEOM(2+ A1 + H(N + K X+ 1) + R1 + T1 + D1 + 1 + C(21)) CALL GEOM(2+A2+H(N+KX+2)+R2+T2+D2+1+2+C(21)) VOUT=VOUT+(V(N+KX+1)+A1+V(N+KX+2)+A2)+DT/2+ 35 DO 24 N=1+NS IF(ITYPE.E0.2.AND.IWET(N).E0.0) GOTO 24 IF(ITYPE.EQ.5.AND.IWET(N).EQ.D) GO TO 24 FCT=1. IF(N.LT.NCH) FCT=DDXCH+B(16)/B(18) IF(N.EQ.1.0R.N.EQ.NN) FCT=DDXCH/2.*B(16)/B(18) IF(N.EQ.NS) FCT=E(21)+8(15)/8(18) IF(NN.EQ.1) FCT=1.

57

58

59

60

61 62

63

64

65

66

67 68

69 70

71

72

73

74

75

76

77 78

79

80 81

82

83

84

85

86

87

88

89

90 91

92

93

94

95

96

97

98

99

100

101

103

104

105

106

107

108

109

110

111

112 113

114 100=10 115 I0=0 116 CALL PREP 117 IF(N.EQ.NCH) C28=C(28) 118 IF(NN.EG.1) C28=C(28) 119 10=100 120 VIN=VIN+C28+DT IF(KN.LE.2) GOTO 50 121 122 DO 20 K=2.KN 123 X=FLOAT(K-1)+DX 124 DX1=DX 125 H2=H(N+K+2) 126 IF(N.EQ.NCH.OR.K.LT.KN) CO TO 18 127 IF(NN.EQ.1) GO TO 18 IF(ITYPE.EQ.3) GO TO 18 128 129 DX1=XI(N+2)-AINT(XI(N+2)/DX)+DX 130 IF(N.LT.NCH) H2=HI(N.2) 131 X=XI(N,2) 132 18 IF(H(N,K-1+2).LT.HDRY*1.01.AND.H2.LT.HDRY*1.01) GO TO 20 . 133 X1=X-DX1 134 IF(JI(N.K.2).EQ.1) GO TO 16 135 X12=(X1+X)/2. 136 CALL STORM(X12+TIME) 137 CALL GEOM(2.A1.H(N.K-1.2).R1.T1.D1.1.2.X1) 138 CALL GEOM(2+A2+H2+R2+T2+D2+1+2+X) 139 VT=VT+(A1+A2)/2./C(9)+DX1+FCT 140 GO TO 17 141 16 J=1 142 H1=H(N+K-1+2) 143 12 DO 13 JJ=J+NJJ IF(XJ(N, JJ,2).GT.X1.AND.XJ(N,JJ.2).LE.X) GO TO 14 144 145 **13 CONTINUE** 146 X2=X 147 H2=H(N.K.2) 148 IF(NN.EQ.1) GO TO 15 149 IF(N.LT.NCH.AND.K.EQ.KN) H2=HI(N.2) 150 GO TO 15 14 X2=XJ(N+JJ+2) HZ=HL(N, JJ,2) 153 15 X12=(X1+X2)/2. CALL STORM(X12,TIME) CALL GEOM(2+A1+H1+R1+T1+D1+1+2+X1) CALL GEOM(2+A2+H2+R2+T2+D2+1+2+X2) VT=VT+(A1+A2)/2./C(9)+(X2-X1)+FCT IF(X-X2.LT.ACCU) GO TO 17 X1=X2 H1=HR(N, JJ,2) J=JJ+1 GO TO 12 17 X1=X-DX1 CALL STORM(X1.TIME) CALL GEOM(2. A. H (N. K- 1, 2) .R. T.D. 1. 2. X1) TT=T C26=C(26) C27=C(27) CALL STORM(X,TIME) H2=H(N+K+2)

151

152

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

184

÷

.

171		IF(NN.EQ.1) GOTO 22
172		IF (N+LT+NCH+AND+K+EQ+KN) H2=HI(N+2)
173	22	CALL GEOM(2+A+H2+R+T+D+1+2+X)
174		TT=TT+T
175		C26=C26+C(26)
176		C27=C27+C(27)
177		TIM=TIME-DT
178		CALL STORM(X1.TIM)
179		CALL GEOM(2+A+H(N+K-1+1) + +T+D+1+1+X1)
180		TT=TT+T
181		C26=C26+C(26)
182		C27=C27+C(27)
183		CALL STORM(X,TIM)
184	•	H2=H(N+K+1)
185		IF(NN.EQ.1) GO TO 19
186		IF(N.LT.NCH.AND.K.EQ.KN) H2=HI(N,1)
187	19	CALL GEOM(2+A+H2+R+T+D+1+1+X)
188		TT=(TT+T)/4.
189		C26=(C26+C(26))/4.
190		C27=(C27+C(27))/4.
191		VIN2=VIN2+(C26-C27)+TT+DT+DX1+C(19)+B(10)+B(11)/B(18)+FCT
192	20	CONTINUE
193	50	IF(NN.EG.1) GOTO 27
194		IF(ITYPE.EQ.3) GO TO 26
195	24	CONTINUE
196		VIN=VIN+VIN2
197		60 TO 27
198	26	VOUT1=D.
199		VT1=VT/FCT
200		VIN1=VIN2/FCY
201	21	VT=VT1+B(21)+B(16)/B(18)
202		VIN=VIN+VIN1+B(21)
203		VOUT=VCUT+VOUT1*B(21)
204		60 10 27
205	31	IF(TTTT.LT.D.) V0=V01
206		1111=1.
207		
208		VIN=VIN+VIN1
209		VOUT=VOUT+VOUT1
210	27	ER=(VT+V5UT-V1N-V0)/(VIN+V0)*100.
211		CER=ER-ER1
212		IF(10.EG.1) WRITE(6, 200) ER.CER.VO.VT.VIN.VOUT
213	200	FORMATICY ACC COMP ERR = + F8.2, 3, CURR COMP ERR = + F8.2, 3, WI H
214		\$ V0 = ++/.3+ V1 = ++/.3+ V1N = ++F7.3+ VOUT = ++F7.3}
215		IF VID-EQ.21 EKI4ER
Z16		IIII=IIME
211		
218		E ND

;

SUBROUTINE EVDT **C** . EVALUATE THE TIME IN TERVAL .DT. COMMON /B1/ B(40),C(40),Z(10),TIME,OPH,NN,N,NCH,RSL,CURVE COMMON /B2/ H(27+27+2)+V(27+27+2)+HL(27+10+2)+HR(27+10+2)+ \$VR { 27+10+2}+VL { 27+10+2}+VJ { 27+10+2}+XJ { 27+10+2}+J I { 27+27+2}+KN+NJ COMMON /B3/ NK(27) +NJ(27 + DX+DT+DIST+HHIN+VHIN+IT YPE+10+0C(27+10)+ \$S+D5 COMMON /B8/ ACCU+ACCUX+ACCUY+HDRY+CC COMMON /B1D/ DXCH+DXRS+DDXCH+DDXRS COMMON /B13/ STR COMMON /B14/ IWET(27) DATA NCT /0/ IF(NCT.GT.D) GO TO 2 TFCT=0.1/(TIME+ACCU) IF(ITYPE.NE.1) GO TO 1 IF(C(4).LT.0.01.0R.3(26).LT.9.) TFCT=0.5 1 IF(TFCT.GT.1.) TFCT=1. CALL OPHEAD DTEQ=DXCH/(1.+SQRT(C(2D)*(1.+OPH)))/C(5) 2 DTMAX=DTEQ+TIME+TFCT DTMIN=1.0E6 FACTOR=0.9 IF(NCT.GT.1.AND.TIME.GT.STR) DTMAX=(TIME-STR+.2)/20. NCT=NCT+1 100=10 10=0 NS=NCH+1 DO 10 N=1.NS IF(ITYPE.EQ.2.AND.IWET(N).EQ.D) GO TO 10 IF(ITYPE.EQ.5.AND.IWET(N).EQ.D) GO TO 10 CALL PREP IF(KN.LE.2) GOTO 8 DO 5 K=1.KN IF(H(N+K+1)+LT+1+1+HDRY) GO TO 5 X=FLOAT(K-1)+OX CALL STORM(X.TIME) CALL OPHEAD CALL GEOM(2+A+H(N+K+1)+R+T+D+1+1+X) TAN=C(1) *V(N+K+1)+SGPT(C(1)+(C(1)-1+)*V(N+K+1)**2+C(1)*C(20)*(D* \$C(9)/C(5)+OPH)) IF(ABS(TAN).LT.ACCU) GOTO 5 DTT=DX/TAN/C(9) IF(DTT.LT.DTMIN) DTMIN=DTT 5 CONTINUE 8 IF(NN.EQ.1) GOTO 11 . IF(ITYPE.EQ.3) GO TO 11 10 CONTINUE 11 DT=DTMIN*FACTOR IF(DT.GT.DTMAX) DT=DTMAX IF(DT.GT.DTEQ) DT=DIEQ 10=100 IF(DT.LT.ACCU) SS=SORT(-1.) RETURN END

\$

1

2

3

4 5

Б 7

8

9

10

11

12

13

14

15

16 17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37 38

39

40

41

42

43

44

45 45

47

48

49

50

51

52 53

54

SUBROUTINE FRIC(VV+HH+F+P+RE+REC+IR+NT+X) 1 2 C EVALUATE THE FRICTIONAL COEFICIENT 3 COMMON /B1/ B(40).C(40).Z(10).TIME.OFH.NN.N.NCH.RSL.CURVE 4 COMMON /B3/ NK(27) +NJ(27)+ DX+DT+DIST+HMIN+VMIN+ITYPE+I0+OC(27+10) 5 \$S+DS 8 COMMON /B8/ ACCU+ACCUX+ACCUY+HDRY+CC С IR=REGIONS OF FRICTION COEFFICIENT VS. REYNOLDS NUMBER 7 SF=C(8) 8 9 CC=C(36)*SF**C(37) 10 IF(CC.LT.24.) CC=24. 11 FMAX=1./ACCU**3 IF(HH.GT.HDRY+1.01) GOTO 1 12 13 20 IR=0 14 F=FMAX REC=0. 15 16 RE=CC/FMAX 17 RETURN 1 RE=ABS(VV*R*B(14)) 18 19 IF(RE.LT.ACCU) GOTO 20 FB2=1./(2.*AL0610(2.*B(2))+1.74)**2 20 21 IF(R.LE.B(2)+C(23)) GOTO 15 С RELS IS THE SOLUTION OF F=C/RE AND 1/SQRT(F)=2*AL 0G10(RE* 72 23 С SORT(F))+0.404 24 IF(CC.LE.24.) RELS=478.22 IF(CC.LE.24.) GOTO 4 25 26 RE1=500. 27 NCT=D 28 2 F1=RE1-CC*(ALOG10(RE1)+AL0G10(CC)+0.404)**2 F2=1.-2.*SQRT(CC)/(ALOG(10.)*SQRT(RE1)) 29 RE2=RE1-F1/F2 30 31 IF(RE2.LT.1.) RE2=1. 32 IF(ABS(RE1-RE2).LT.ACCU) GO TO 3 33 NCT=NCT+1 34 IF(NCT.GT.20) SS=SQRT(-1.) 35 RE1=RE2 36 GO TO 2 37 3 RELS=RE2 4 IF(C(23).LT.ACCU) GO TO 7 38 39 С RELR IS THE SOLUTION OF F= C/RE AND 1/SQRT(F)=I*AL OG10(2*R/K)+1.7 4 RELR=CC+(2.+ALOG10(2.+R/C(23))+1.74)++2 40 С 41 CHECK THE EXISTENCE OF RELS 42 IF(RELS.GT.RELR) GO TO 6 С THERE EXIST BOTH RELS AND RESR 43 44 С RESR IS THE SOLUTION OF 1/SQRT(F)=2*ALOG10(RE*SQRT(F))+0.404 AND 1/SQRT(F)=2*ALOG10(2*R/K)+1.74 С 45 46 RESR=2.*R/C(23)*(2.*ALOG 10(2.*R/C(23))+1.74)*10.**0.568 47 IF(RE.LT.RESR) GO TO 7 48 С F FOR TURBULENT FLOW ON ROUGH SURFACE 49 IR=3 REC=RESR 50 51 5 F=1./(2.*AL0610(2.*R/C(23))+1.74)**2 52 RETURN 53 С THERE EXISTS RELR ONLY 54 6 REC=RELR 55 IF(RE.LT.RELR) GO TO 10 56 IR=5

57				GO TO 5
58			7	REC=RELS
59				IF(RE.LT.RELS) GO TO 11
60		C		TURBULENT FLOW ON SMOOTH SURFACE
61	•			IR=2
62				F=0.1E-3
63				NCT=0
64			8	F1=-1./F+2.*ALOG10(RE*F)+0.404
65				F2=1./F**2+2./(F*ALOG(10.))
66		٠		FNEW=F-F1/F2
67	-			IF(FNEW.LT.ACCU) FNEW=ACCU
68				IF (ABS(F-FNEW).LT.ACCU) CO TO 9
69				NCT=NCT+1
70		•		IF(NCT.GT.20) SS=SQRT(-1.)
71				F=FNEW
72				GO TO 8
73			9	F=FNEW+FNEW
74				RETURN
75		С		LAMINAR FLOW
76			10	IR=4
77				F=CC/RE
78				IF(F.GT.FMAX) F=FMAX
79				RETURN
80			11	IR=1
81				F=CC/RE
82				IF(F.GT.FMAX) F=FMAX
83				RETURN
84			15	IR=6
85				REC=CC/FB2
86				F=CC/RE
87				IF(F.GT.FMAX) F=FMAX
88				RETURN
89				END

. 188 ;

C Ç Č	FUNCTION FRTST(V,D,OP,C1,C5,C9,C20,ID) THE EQUATION OF FROUDE NUMBER ID=1 TO TEST FROUDE NUMBER ID=2 TO FIND FROUDE NUMBER
1	T1=C1*ABS(V) T2=SQRT(C1*(C1-1.)*V*V+C1*C2D*(D*C9/C5+OP)) G0 T0 (1+2),ID FRTST=T1-T2 RETURN 2 FRTST=T1/T2 RETURN
	END

1		SUBROUTINE GEOM(TD+A+Y+R+T+D+TDTM+NT+X)
2	с	COMPUTE THE MAGNITUDES OF CHANNEL GEOMETRIES
3	ĉ	
4	č	1 A IS GIVEN
5	č	2 Y TS GIVEN
â	č	
7	č	
8	č	5 D TS GIVEN
ĝ	Č.	5 Y IS GIVEN TO FIND CENTROID HD (RETURNED BY R)
10	Č	TOTM
11	č	1 FOR DIMENSIONLESS VARIABLES
12	č	2 FOR DIMENSIONAL VARIABLES
13	. 0	COMMON / B1/ B (40) + C (40) + 7 (10) + T M F + OPH + NN + N + N CH + P SI + C UR V F
14		COMMON /B2/ H (27 • 27 • 2) • V (27 • 27 • 2) • H (27 • 10 • 2) • H R (27 • 10 • 2) •
15		\$VR(27,10,2),VI(27,10,2),VI(27,10,2),XI(27,10,2),II(27,27,2),KN,N,II
16		$COMMON / B3 / NK(27) \cdot N(27) \cdot OY \cdot DT \cdot DTST \cdot HMTN \cdot VMTN \cdot TTYPE \cdot TO \cdot O(27 \cdot 10)$
17		
18		COMMON /B4/ TT(27.2).XT(27.2).HT(27.2).VT(27.2).OT(27.2).WT(27.2).
19		
20		
21		
27		
22		
24		
25		C V (A1 + A2 + A3 + U) = - (A1 + U + (A2 + U) + U) + U + U + U + U + U + U + U +
25		$C(A_1,A_2,\dots,A_{n-1}) = (A_1+U+U+A_2+U+A_3)$
20		
28		41) 45 (0 T (U + 4) 4 (T + 4) 1 / 4 (U) (0 + 4) 4 (U + 4 + 4) 4 (U + 4 + 4) 4 (0) T (A) 4 (U + 4) 4 (A) 4) 4 (A) 4 (A) 4 (A) 4 (A) 4 (A) 4 (A) 4 (A) 4 (A) 4 (A) 4 (A) 4 (A) 4 (A) 4 (A) 4 (A) 4) 4 (A) 4 (A) 4 (A) 4 (A) 4 (A) 4 (A) 4) 4 (A) 4 (A) 4 (A) 4 (A) 4 (A) 4 (A) 4 (A) 4) 4 (A) 4 (A) 4 (A) 4 (A) 4 (A) 4 (A) 4) 4 (A) 4 (A) 4 (A) 4 (A) 4) 4 (A) 4 (A) 4 (A) 4) 4 (A) 4 (A
29		(1) - 3 A + (1 + 4 + 0 + 0 + (1 + 4 + 1) + A) - (1 + 4 + 1 + 4 + 2 + (1 + 4 + 1) + (0 + 1 + 4 + 3) + (1 + 4 + 2 + 1) + (0 + 1 + 2 + 1) + (0 + 1 + 1) + (0 + 1 + 1) + (0 + 1 + 1) + (0 + 1 + 1) + (0 + 1 + 1) + (0 + 1 + 1) + (0 + 1 + 1) + (0 + 1 + 1) + (0 + 1 + 1) + (0 + 1) + (0 + 1 + 1) + (0 + 1)
30		¢))
30		СН(А1 + А2 + А7 + H) = А1 + H + + 5 - / 5 - + А1 + А2 + H + + H - /2 - + (А2 + А2 + 7 + А7 + А7 + H + + + + +
32		5./3.+42*A3;iiiiiA3;a/3;ii
33		TE(N, EQ, NCH) GO TO 20
34	С	FOR OVERLAND FLOW (N-LT-NCH-AND-N=NCH+1)
35	-	IF(IDIM-EG-2) GO TO 6
36		60 T0(1+2+3+4+5+2)+TD
37	С	CHANGE DIMENSIONLESS PATAMETERS TO DIMENSIONAL HYDRAULIC DEPTH D
38	-	1 D=A+B(1B)
39		60 10 11
40		2 D=Y*B(16)*C(9)/C(5)
41		60 TO 11
42		3 D = R * B(17)
43		60 10 11
44		4 SS = SQRT(-1.)
45		5 D = D + B(16)
46		60 TO 11
47	с	CHANGE ALL DIMENSIONAL PARAMETERS TO DIMENSIONAL HYDRAULIC DEPTH O
48	•	6 60 T0 (7+8+9+10+11+8)+TD
49		7 DIA
50		CO TO 11
51		8 D=Y*C(9)
52		G0 T0 11
53		9 D=R
54		60 TO 11
55		10.55=SQRI(-1.)
56		11 A=D

;

.

57 Y=D/C(9) 58 R⊐D 59 T=1. 60 IF(ID.EQ.6) R=Y/2. IF(IDIM.EQ.2) RETURN 61 62 A=A/B(18) 63 Y=Y+C(5)/B(16) 64 R=R/B(17) 65 T=T/B(10) 66 D=D/B(16) IF(ID.EQ.6) R=Y/2. 67 68 RETURN 69 С FOR GUTTER FLOW 70 20 IF(IDG.EQ.1) 60 TO 40. С CHANNEL TYPE CUTTER FLOW CROSS-SECTION OF CHANNEL IS 2FT CF 71 BOTTEM WITH 1:1 SIDE SLOPE 1FT HIGH 72 С IF(IDIM.EQ.2) GO TO 26 73 74 GO TO (21+22+23+24+25+22)+ID 75 21 Y=(SQRT(1.+A+S(18))-1.)/C(5) 76 GO TO 31 77 22 Y=Y+B(16)/C(5) 78 GO TO 31 23 R=R+B(17) 79 8 D GO TO 29 24 Y=(T+B(10)/2.-1.)/C(5) 81 82 GO TO 31 83 25 D=D+B(16) 84 GO TO 28 26 60 TO (27.31.29.30.28.31).ID 8.5 86 27 Y=(SQRT(1.+A)-1.)/C(5) 60 TO 31 87 88 28 Y=((D-1.)+SQRT(D+D+1.))/C(5) 89 GO TO 31 90 29 Y=(1.414*R-1.+SQRT((1.-1.414*R)**2+2.*R))/C(5) 91 GO TO 31 92 30 Y=(T/2.-1.)/C(5) 93 31 DD=Y*C(5) 94 A=(2.+DD)+DD 95 Y=DD/C(5) 96 R=A/(2.+2.828+DD) 97 T=2.+2.+DD 98 D=A/T 99 IF(ID.EQ.6) R=DD+DD+(1.+DD/3.)/A 100 IF(IDIM.EQ.2) RETURN 101 A=A/B(18) 102 Y=Y+C(5)/B(16) 103 R=R/B(17) 104 T=T/B(10) 105 D=D/8(16) 106 IF(ID.EQ.6) R=DD+DD+(1.+DC/3.)/(A+B(18)) 107 RETURN 108 С CURB TYPE GUTTER FLOW 103 40 XJJ=XJ(N+NJJ+NT) 110 IF(NJ(NCH).LT.1) GO TO 54 111 IF(ITYPE.EQ.2.AND.X.LT.XJJ) GO TO 54 112 IF(ITYPE.EQ.2.AND.X.GE.XJJ) GOTO 52 113 54 XDX=X/DXCH

i91

;

:

114 DDX=XDX-AINT(XDX-0.00001) 115 K=XDX+1.99999 116 IF(K.GT.NN) K=NN 117 IF(K.EQ.1) GOTO 59 118 IF(NJJ.EQ.0) CO TO 58 119 IF(JI(N.K.NT).EQ.0) GO TO 58 120 XK=FLOAT(K-1) *DXCH XK1=XK-DXCH 121 122 D0 55 J=1+NJJ 123 XJJ=XJ(N+J+NT) 124 IF(XJJ.GT.XK1.AND.XJJ.LT.XK) GO TO 56 125 55 CONTINUE 125 GO TO 58 127 56 IF(XJJ.LE.X) GOTO 57 128 IF((XJJ-XK1).LT.ACCU) GOTO 81 T=TL(J+NT)+(CT(K-1+NT)-TL(J+NT))+(XJJ-X)/(XJJ-XK1) 129 130 GOTO 61 131 81 T=TL(J+NT) 132 GO TO 61 133 57 IF((XK-XJJ).LT.ACCU) GOTO 82 134 T=TR(J+NT)+(CT(K+NT)-TR(J+NT))+(XJJ-X)/(XJJ-XK) 135 GOTO 61 82 T=TR(J+NT) 136 137 GOTO 61 138 58 K1=K-1 139 T=CT(K1+NT)+(CT(K+NT)-CT(K1+NT))+DDX 140 GOTO 61 141 59 T=CT(1,NT) 142 61 DXPG1=XPG1/B(11) 143 DXPG2=XPG2/8(11) XXI=C(22)+DXPG1+DXPG2-T+E(10)/B(11) 144 145 IF(XXI.GE.C(22)) GOTO 62 146 XXID=XXI+B(11) 147 HY=GY(AA1+BB1+CC1+B(22)) 148 AS=GA(AA1,BB1,CC1,B(22))-GA(AA1,BB1,CC1,XXID) 149 HS=(GH(AA1+BB1+CC1+B(22))-GH(AA1+BB1+CC1+XXID))/AS 150 SX=RSL-GS(AA1+BB1+XXID) 151 62 T=T*B(10) 152 TAN1=TAN(ASIN(SP1)) 153 TAN2=TAN(ASIN(SP2)) 154 SEC1=1./COS(ASIN(SP1)) 155 SEC2=1./COS(ASIN(SP2)) 156 IF(IDIM.EQ.2) GOTO 46 157 С CHANGE DIMENSIONLESS PARAMETERS TO DIMENSIONAL ONES 158 A=A+B(18) 15 3 Y=Y+B(16)/C(5) 160 R=R*B(17) 161 D=D*8(16) THE FOLLOWING EXPRESSIONS ARE ALL DIMENSIONAL 162 С 163 46 GO TO (47+48+49+50+51+48)+ID 164 47 D=A/T 165 GO TO 51 166 48 IF(T.LE.XPG2) D=Y*C(5)-T/2.*TAN2 167 IF(T.GT.XPG2.AND.T.LF.(XPG1+XPG2)) D=(2.*Y*C(5)-XPG2*TAN2)*XPG2/T/ 168 \$2.+(2.*Y*C(5)-2.*XPG2*TAN2-(T-XPG2)*TAN1)*(T-XPG2)/T/2. 169 IF(T.GT.(XPG1+XPG2))D=(2.*Y*C(5)-XPG2*TAN2)*XPG2/T/2.+(2.*Y*C(5)-2 170 \$**XPG2*TAN2-XPG1*TAN1)*XPG1/T/2*+AS/T+(Y*C(5)-XPG2*TAN2-XPG1*TAN1-

171	\$HY) * (T-XPG1-XPG2)/T			4
172	GOTO 51			
173 ,	49 IF(T.LE.XPG2) D=R*(TAN2/	2.+SEC2)/(1R/T)		
174	IF(T.GT.XPG2.AND.T.LE.(X	PC1+XPG2))D=((T-X PG	2/2.1/T+XPG2	*TAN2+(T-XP
175	\$G2)/(2.*T)*(T-XPG2)*TAN1	+XPG2+SEC2+(T-XPG2)	*SEC1) *R/(T-	R)
176	IF(T.GT.(XPG1+XPG2))D=((T-XPG2/2.1/T * XPG2 *T	AN 2+ (T-XPG1/	2XPG21/T#
177	\$XPG1+TAN1+(T-XPG1-XPG2)/	T+HY+AS/T+YPG2+SEC2	+YPG1* SEC1+S	Y1+P/(T-P)
178	6010 51		. ATOL SLOL	
179	50 SS=SQRT(-1.)		,	
180	51 A=T+D			
181	TE(T_1E_XPG2) Y=(0+T/2.*	TAN 2)/C(5)		
182	TELT GT YPG2 AND THE IN	PC1 + VP C 2 1 1 V - 1 D + 1 T - V	000/0 1/T+VD	C2+7 4112+ / 7
183	\$¥PG23/(2.*T)*(T-YPG2)*TA	101 + 07 = 10 + (1 - 0)	102/20 1/1+AF	02#1AN2+11-
184	TELT CT. (YDC1 4YDC2) 1Y+10			140 VOODLA
185	ST * YPG1 * TAN1+(T-YPC1-YPC2		+ IANZ+ (I= APG	1/2 1/621/
185	TET.LE_YPG2) P=A/(y+c)s	1+T+CEC21		
187	TELT.GT.YPG2. AND T LE /Y	7 T + 32 627 10 - 1/1 V + C1	E14800 2465 02	ALT YDODN C
188	4E CT)		51+XP02+5EC2	
189	TELT CT EVECIAVECONDEAA	[X+C/E] + X002 + CE 02 + X	001.05.04.041	
190	$\frac{1}{1} + \frac{1}{1} + \frac{1}$	(1+C(5)+XPGZ+SECZ+X	PGI#SE CI#SX J	
191		•		
192	TH TELT IE VPC2) P-IIV+CIEN			
197	*/12 + Y + C(5) = T + T(1) + C(5)	-1+1AN21++2++1+1A N2	*(*************************************	3.*!*!AN2}]
19 <u>4</u>	$\frac{1}{12} + \frac{1}{14} $		N. 0151	71404
195			T+C(5)-XPGZ+	1AN2]**2+XP
196	\$T_YPC2)+TAN1}++2 +(T_YPC	3.* AP62*1 AN2)*1 - AP	021* (T *C(5)-	XPGZ + IANZ-U
197	$f = \frac{1}{2} + $	2) * * 2 • * IAN1* (T * C (5)	+XPGZ# LANZ-2	•/3•*(T-XFG
198	TELT. GT. (YPG1 + YPG2) (P=/Y)	002+1V+0151-V002+78	121++2 (2	00.000.700
199	\$2* [¥ + C [5] + 2 . /3. * YPG2*TAN	21/2 + 10 + 10 - 1 + 1 + 0 / 5) - 1 + 0 / 5 - 1 + 0 / 5		GZ#XPGZ#IAN
200	\$ /7 + YPG1 + YPG1 + TAN1 + / Y + C	(5)_2 /7 + VOC1 + TA N1	·XPGI#IANI#XP	62*1AN21**2
201	\$XPG2) = (Y = C(5) = YPG1 = TAN1-	YD G 2 + T A N 2 - U Y X + + 2 - /2	-APGZ# TANZI/	2. +(1-XPG1-
20.2	¢ ¥PG 2 * T AN2_UV+ UC 1 1 / A	AP 02+1412-11 1++2.72	**************	-XPOIFIANL-
203	HCTD=R	4		
204	71 TELTOIM-FO-21 RETURN		,	
205	A=A/B(18)			
206	Y=Y+C(5)/8(16)			
207	R=R/B(17)			
20.8	T = T / B (10)			
209	D = D/B(16)			
210	IF(ID.EQ.6) R=HCTD+C(5)/	3(16)		
211	RETURN			
212	52 TE(TD, EQ.5) Y=2.*D			
213	T=Y+8(16)/C(5)+COS(ASTN)	SP 211/SP2/B(10)		
214	A=Y*B(15)/C(5)*T*B(10)/2	/8/101		
215	D = A * B (18) / (T * B (10)) / B (16)			
216	P=Y/SP7+Y			
217	R = A * R (18) / P / R (17)			
21.8	TE(T0.E0.E) P-V/3			
219	TE(TOTM_EQ.1) DETIDN			
220	TTT*R(10)			
221	Δ=Δ*Β(18)			
77 7	D=D+B(16)			
72.3	R=R*B(17)		1. A.	
224	RETURN	· ·	1	
225	END	- 2 1		
-		· .		· · · ·

1		SUBROUTINE GOON	• .	·	
2	C	SUBSTITUTE THE VAL	JES OF ALL VARIAB	LES OBTAINED AT	TIME LEVEL 2
- 3	⁴ C	INTO THE CORRESPOND	ING VARIABLES AT	TIME LEVEL 1	
4		COMMON /81/ 8(40)+((40) • Z(10) • TIME •	OPH . NN .N .N CH .R SL	CURVE
5		COMMON /82/ H127,27	· 2) • V (2 7 • 27 • 2) • H	L(27,10,2),HR(2	7,10,2),
6		\$VR(27,10,2),VL(27,	0.2) · VJ(27, 10,2)	+ XJ(27+10+2)+J I	27.27.2).KN.NJJ
7		COMMON /83/ NK(27)	NJ127 HDX+DT+DTS	T .HMTN .VHTN.TTYP	F.TG.OC(27.10).
8		\$5.05			
q		COMMON /84/ TT(27.		(. 2) . VT (27 . 2) . A T	27.21.447 (27.2).
10		\$CT (27, 2) - CH(27, 2) - (W 127. 21		21121411214210
11		COMMON 200 / ACCULA		~	
**		COMMON /88/ TL/10			
17		NOTHON / BS/ ILIII/	R . 10 . 2 .		
13		NS=NCH+1	•		
14		DU 10 N=1+NS			3
15		KNENK(N)			
16		DO 1 K=1 •KN			
17		$H(N_{1}K_{1}) = H(N_{2}K_{2})$			
18		$V(N \cdot K \cdot 1) = V(N \cdot K \cdot 2)$			
19		JI(N+K+1)=JI(N+K+2)	r ⁱ t		
20		IF(H(N.K.)).LT.HDRY	() H(N +K+1)=HDRY		
21	1	CONTINUE			
22		IF(N.EQ.NS) GOTO 8			
23		II(N,1)=II(N,2)	1		
24		HI(N+1)=HI(N+2)			
25		QI(N,1)=QI(N,2)			
26		WI(N+1) = WI(N+2)			
27		XT [N+1]=XT [N+2]			
28		VI(N+1)=VI(N+2)		•	
29		CT(N+1)=CT(N+2)			
30		CH(N+1)=CH(N+2)			
71		CV(N-1)=CV(N-2)			
マク		TEICTIN. 11.1 T.ACCUS	CT (N -1) = AC CU+D .	99	
77	9	DO 2 1-1-10			
33 74	0				
75					
33 76					
20					
31					
38		HRIN&J#1J=HRIN#J#21			
39	-	HL(N+J+1)=HL(N+J+2)			+
40	2	CONTINUE			
41		IF (NN.EQ.1) CO TO 5	i		
42	10	CONTINUE .			
43		DO 30 J=1.10			
44		TL(J+1)=TL(J+2)			
45		TR(J,1)=TR(J,2)			
46	30	CONTINUE			
47	5	DO 20 N=1.NS			· · ·
48		KN=NK(N)			
49		DO 11 K=1.KN			
50		H(N+K+2)=0.			
51		V(N+K+2)=0.			
52		JI(N+K+2)=0			
53	11	CONTINUE			
54		TE (N.EQ.NS) GOTO 9			•
55		CV(N+2)=0-			
56		CH(N+2)=0.		1	
		U I I I I I I I I I I I I I I I I I I I		· .	

;

57	CT(N+2)=CT(N+1)
58	XI(N+2)=XI(N+1)
59	WI(N+2)=0.
60	QI(N,2)=0.
61.	VT(N+2)=0.
62	HT (N+2)=0.
63	TT(N.2)=0
64	9 00 12 1-1-10
65	
65	
60	
67	VR (N+J+Z = 0+
68	VL(N+J+2)=0.
69	VJ(N+J+2)=0+
70	XJ(N+J+2)=0.
71	12 CONTINUE
72	IF(NN.EQ.1) RETURN
73	20 CONTINUE
74	DO 21 J=1+10
75	
75	
77	
	ZI CONTINUE
18	RETURN
79	END

ļ

:

SUBROUTINE INBDY(ID, XCH+HCH+TCH+NT) 1 2 С SOLVE THE INTERNAL BOUNDARY-VALUE PROBLEM BETWEEN ROAD SURFACE 3 С FLOW AND GUTTER FLOW 4 ID=INDEX FOR COMPUTING INTERNAL BOUNDARY FLOW CONDITIONS С 5 С 1 FOR GRID POINT 6 С 2 DOWNSTREAM 7 С **3 UPSTREAM** 8 COMMON /B1/ B(40), C(40), Z(10), TIME, OPH, NN, N, NCH, RSL, CURVE q COMMON /B2/ H(27+27+2)+V(27+27+2)+HL(27+10+2)+HR(27+10+2)+ 10 \$VR(27,10,2),VL(27,10,2),VJ(27,10,2),XJ(27,10,2),JI(27,27,2),KN,NJ 11 COMMON /B3/ NK(27) +NJ(27) + DX + DIST + HM IN + V MIN + IT YPE + 10 + O C(27 + 10) + 12 \$S,DS 13 COMMON /B4/ II(27.2).XI(27.2).HI(27.2).VI(27.2).QI(27.2).WI(27.2). \$CT(27+2)+CH(27+2)+CV(27+2) 14 15 COMMON/EG/AA1+BB1+CC1+SNK+IDG+SP1+XPG1+SP2+XPG2 16 COMMON /BS/ ACCU+ACCUX+ACCUY+HDRY+CC 17 COMMON /B10/ DXCH+DXRS+DDXCH+DDXRS 18 COMMON /B14/ IWET(27) 19 DIMENSION F(2) + X(2) 20 DATA THIN/0.01/ 21 С IFA=INDEX FOR ASSUMPTION OF INTERNAL BOUNDARY 22 1. ASSUME CONTINUOUS WATER SURFACE C 23 С 2. ASSUME DISCONTINUOUS WATER SURFACE. IF ANY 24 IFA=1 DXPG1=XPG1/8(11) 25 26 DXPG2=XPG2/3(11) 27 IF(ITYPE.EG.2.ANC.ID.EQ.1.AND.H(NCH.N.2).LT.HDRY+1.01) RETURN 28 IF(ITYPE.NE.5.OR.ID.EQ.2) GO TO 1 29 XW=TIME+C(30) 30 PW=C(21)-XW 31 N1=N 32 IF(ID.EQ.3) N1=1 33 XN=FLOAT(N1-1)+DXCH 34 IF(XN.LT.PW) CT(N1+2)=ACCU+0.99 35 IF(XN.LT.PW) RETURN 36 1 IF(NN.EG.1) SSS=-1. 37 IF(NN.EQ.1) SSS=SQRT(SSS) 38 NNNIN 39 DISTT=DIST 4 0 GO TO (7.6.8).ID 41 8 N=1 42 GOTO 7 43 6 NENN 44 7 IF(IDG.EQ.2) GO TO 30 45 K=NK(N)-1 46 MEK 47 XK=FLOAT(K-2)+DXRS 48 CALL STORM(XK,TIME) 49 HKKK=H(N,K-1,2) 50 VKKK=V(N+K-1+2) 51 NKKKED 52 IF(B(26).LT.ACCU.AND.H(N.K-1.1).LT.1.1*HDRY) NK KK =1 53 IF(NKKK.EQ.1) H(N.K-1.2)=H(N.K.2) IF(NKKK.EQ.1) V(N.K-1.2)=V(N.K.2) 5 XK=FLOAT(K-1)*DXRS XK1=XK-DXRS

÷

196

54

57		HH=H(NCH+N+2)
58		Y22=AA1*(C(22)*B(11))**2•+BB1*C(22)*B(11)+CC1
59		IF(IFA.EQ.1) GOTO 10
6 ()		IF(II(N+1).EQ.D) GO TO 15
61	- C	THERE IS A DISCONTINUITY BETWEEN ROADSURFACE FLOW AND CHANNEL FLO
62		XI(N+2)=XI(N+1)+DT+WI(N+1)
63		YXI=AA1*(XI(N+2)*B(11))**2++BB1*XI(N+2)+B(11)+CC1
64		YH=YXI-Y22
65		CALL STORM(XI(N+2)+TIME)
66		IF(XI(N+2).6E.(C(22)+DXPG1)) HRR=HH-TAN(ASIN(SP2))*(C(22)+DXPG1+DX
67	•	\$PG2-XI(N+2))+B(11)+C(5)/B(16)
68		IF(XI(N+2).GE.C(22).AND.XI(N+2).LT.(C(22)+DXPG1)) HRR=HH-TAN(ASIN(
69		\$\$P1))*(C(22)+DXPC1-XI(N+2))*B(11)*C(5)/B(16)-TAN(ASIN(SP2))*DXPG2*
70		\$B(11)*C(5)/B(16)
71		IF(XI(N+2)+LT+C(22)) HRR=HH-YH+C(5)/B(16)-TAN(ASIN(SP1))+DXPG1+B(1
72		\$1)*C(5)/B(16)-TAN(ASIN(SP2))*DXPG2*B(11)*C(5)/B(16)
73		CALL GEOM(6,ARR,HRR,HHR,TRR,DRR,1,2,XI(N,2))
74		DXK=XI(N+2)-XK
75		HLL=H(N+K+2)+(H(N+K+2)-H(N+K-1+2))+DXK/DXRS
76		VLL=V{N+K+2}+{V{N+K+2}-V{N+K-1+2}}*DXK/DXRS
77		CALL GEOM(G+ALL+HLL+HHL+TLL+DLL+1+2+XI(N+2})
78		IF(ALL*ARR.LT.D.) GO TO 10
79		VRR=VLL-ABS(ALL-ARR)*SQRT(C(1)*C(20)/(ALL*ARR)*((ALL*HHL-ARR*HHR))
80		\$/(ALL-ARR)+(C(3)/C(5))++2+0PH))
81		XJT=(ALL+VLL-ARR+VRR)/(ALL-ARR)
82		IF(HRR-HLL) 9,10,3
83		3 FRL=FRTST((VLL-XJT)+DLL+OPH+C(1)+C(5)+C(9)+C(20)+1)
84		FRR=FRTST((VRR-XJT), DRR, 0PH, C(1), C(5), C(9), C(20), 1)
85		IF(FRL+LT+0++CR+FRR+GT+0+) GO TO 10
85		4 HI(N,2)=HLL
87		VI(N,2)=VL
88		
83		
90		11(N,2)=1
31		
32		
23		
95		$ = \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum$
96		
97		
98	C	FOR CONTINUOUS WATER SHIEACE
99	C	
100		
101		$I = I \times I = I \times $
102		\$PG2-XK)+8(11)+C(5)/8(16)-Hu
10.3		$TE(XK, GE_{1}(22), AND, XK_{1}, T_{1}(22), DYPG(1)) + K=H(N_{1}K_{2}, 2)+TAN(ASTN(SP1))$
104		$\frac{1}{3}$
105		\$/B(16)-HH
106		$IF(XK_LT_C(22)) = HK = H(N_YK_2) + YK + C(5)/B(15) + TAN (AST N(SP1)) + DYPC(+R(1))$
107		\$1)*C(5)/B(16)+TAN(ASIN(SP2))*DXPG2*B(11)*C(5)/B(16)-H4
103		YXK1=AA1+(XK1+B(11))++2.+2B1+XK1+B(11)+CC1
109		YK1=YXK1-Y22
110		IF(XK1.GE.(C(22)+DXPC1)) HK1=H(N.K-1.2)+TAN(ASIN(SP2))+(C(22)+DXPG
111		\$1+DXPG2-XK1)+B(11)+C(5)/F(16)-HH
112		IF(XK1.GE.C(22).AND.XK1.LT.(C(22)+DXPG1)) HK1=H(N.K-1.2)+TAN(ASTN(
113		SP1) + (C(22) + 0XPG) - XK1) + E(11) + C(5) / B(16) + TAN(ASTN(SP2)) + 0XPG2 + B(11)

Ş

114	\$)*C(5)/B(16)-HH		
115	IF(XK1.LT.C(22)) $HK1=H(N.K-1.2)+YK1+C(5)/B(16)+TAN(ASIN(SP1))+DXPG$		
116	\$1*B(11)*C(5)/B(16)+TAN(ASIN(SP2))*DXPG2*B(11)*C(5)/B(16)-HH		
117	IF(HK.LT.O.) K=K-1		
118	IF(K.LE.O) GOTO 19		
119	IF(HK.LT.0.) GO TO 5		
120	19 DXK=HK*DXRS/(HK1-HK)		
121	XI(N+2)=XK+DXK		
122	CTMIN=HMIN+8(16)/C(5)/TAN(ASIN(SP2))/B(10)		
123	IF(XI(N,2).LE.D.) XI(N,2)=ACCU		
124	IF(XI(N+2).GE.(C(22)+DXPG1+DXPG2-CTMIN+B(10)/B(11))) XI(N+2)=C(22)		
125	\$+DXPG1+DXPG2-CTMIN*8(10)/8(11)		
126	DXK=XI(N+2)-XK		
127	HI(N+2)=H(N+K+2)-DXK*(H(N+K+1+2)-H(N+K+2))/DXRS		
128	$IF(HI(N,2) \cdot LT \cdot H(N \cdot K, 2)) HI(N \cdot 2) = H(N \cdot K, 2)$		
129	CALL GEOM(2+AI+HI(N+2)+RI+TI+DI+1+2+XI(N+2))		
130	VT(N+2) = V(N+K+2) - DXK + (V(N+K-1+2) - V(N+K+2)) / DXRS		
131	$IF(VI(N_{2}2) + I + V(N_{2}K_{2})) VI(N_{2}2) = V(N_{2}K_{2})$		
137	11 $VI(N_2)=0$.		
177			
135 134	II(N,2)=0		
175	12 (T(N,2)) = (C(22) + DXPG1 + DXPG2 - XT(N,2)) + B(11)/B(10)		
135			
130			
120			
170			
122	$n n - n n^{-1}$		
140	TETHINAKAN AT HORY/2-1 GOTO 13		
107	$D Y = Y T (N + 2) = F I \cap A T (K - 2) = 0 Y S$		
107			
143			
105	TARACIS VINTREITZI TUTTINZI TUTTI TZII DANDIDAN		
145			
140			
147			
140	$r_{1} \rightarrow r_{1}r_{2}$		
149	KN-KKINJ Tein eo noun dist-disti		
120	TERNOLGONON DIST-DISTI		
127			
152	C FOR DENERATION OF DISCONTINUITY		
153			
154			
155			
156	16 HLL - H(N + K + 2) - (H(N + K + 1 + 2) - H(N + K + 2)) + K(1)/UKS		
157			
15.8	X = X + X + X + 1		
159	YXE=AA1*(XE*E(11))**2**B61*XE*B(11)+601		
160			
161			
16Z	IF(XL+GE+(U(ZZ)+DXPOI)) HKK-HH-IAN(ASIN(SPZ))*(U(ZZ)+UXPGI+UXPGZ) X		
163			
164	IF (XE GE U(22) ANU XE LI (U(22) UXPG1) F HKK \pm HH $-$ IAN(ASIN(SPI)) U(22)		
165	\$2}+DXPG1-XE}+B(11)+C(5)/B(16)+TAN (ASIN(SP2))+DXPG2+B(11)+C(5)/B(16		
166	\$}		
167	IF(XE.LT.C(22)) HRR=HH-YE*C(5)/B(16)-TAN(ASIN(SP1))*DXPG1*B(11)*C(
168	\$5)/B(16)-TAN(ASIN(SP2))*FXPG2+B(11)+C(5)/B(16)		
169	CALL GEOM(G+ALL+HLL+HHL+TLL+DLL+1+2+XX)		
170	$C \wedge I = C C \wedge V C \wedge A \cap D \wedge H \cap D \cap H \cap D \cap D \cap D \cap D \cap D \cap D \cap A \cap A$		
171		CALL STORM(XE.TIME)	
-------	------	---	---------------
172		CALL OPHEAD	
173		IF(ALL*ARR.LT.D.) GO TO 10	
174		VRR=VLL-ABS(ALL-ARR) +SQRT(C(1) +C(20)/(ALL +ARR) + ((ALL	+HHL-ARR+HHR]
175 -	ģ	\$/(ALL-ARR) + (C(9)/C(5)) + + 2+OPH))	
175		XJT=(ALL+VLL-ARR+VRR)/(ALL-ARR)	
177		IF(HRR-HLL)25+10+25	
178	25	F(I)=XI(N+1)+DT+XJT/2+XE	
179		IF(ABS(F(I)).LT.ACCU) GO TO 18	
180		IF(I.EQ.1) GO TO 17	
181		NCT=NCT+1	
182	•	IF(NCT.GT.20) GO TO 10	
183		TELABS(EL1)-E(2)) + T. ACCU+ACCU) 60 TO 20	•
184		XX=(F(1) + X(2) - F(2) + X(1)) / (F(1) - F(2))	
185		X(1) = X(2)	
186		X(2)=XX	8
187		F(1)-F(2)	
183		RO TO 16	
189	17	T=2	
190		Y(2) = Y(1) + 1 - 1	
191		60 TO 16	
192	20	TE(ABS(E(T)), GT, 10, *ACCU) WRITE(6, 202) E(T)	
193	202	FORMAT(/* AT INBDY F(1)=F(2)=*•E15.8)	
194	18	TE(HIL, GT_HER) GOTO 25	
195	10	FRL=FRTST((VLI-XJT)+DLI+OPH+C(1)+C(5)+C(3)+C(20)+1)	
196		FRR=FRTST((VRR=X,IT)+DRR+OPH+C(1)+C(5)+C(9)+C(20)+1)	
197		IF(FRI at Tallas OR a FRR a GT a Da) GO TO 10	
198		GOTO 27	
199	26	FRL=FRTST((XJT-VLL)+CLL+OPH+C(1)+C(5)+C(9)+C(20)+1)	
200		FRR=FRTST((XJT-VRR), DER, OPH, C(1), C(5), C(9), C(20), 1)	
201		TELERI OT De OR FRR IT DAL GOTO 10	
202	27	$TF(XE_{\bullet}GE_{\bullet}(C(22)+DXPG1+DXPG2)_{\bullet}OR_{\bullet}XE_{\bullet}(E_{\bullet}D_{\bullet}) = 0 0 0 10$	
203		XI(N+2)=XE	
20.4		60 TO 4	
205	С	FOR CHANNEL TYPE GUTTER FLOW	
206	- 30	CALL PREP	
207		CALL DBDY	
208		XI(N,2)=XI(N,1)	
209		HI(N,2)=H(N,KN,2)	
210		VI(N,2)=V(N,KN,2)	
211		CALL GEOM(2.AI, HI(N, 2), RI, TI, DI, 1.2. DIST)	
212		QI(N+2)=AI+VI(N+2)	
213		II(N,2)=0	
214		N =N NN	
215		K N= NK (N)	
216		IF(N.EQ.NCH) DIST=DISTT	
217		RETURN	
218		E ND	

i99

SUBROUTINE INFLT(ID, TMLS) C COMPUTE INFILTRATION RATE COMMON /B1/ B(40).C(40).Z(10).TIME.OPH.NN.N.NCH.RSL.CURVE COMMON /B8/ ACCU+ACCUX+ACCUY+HDRY+CC COMMON/B16/AAA, BBB+CCC+TD+RTO+RMN+RAV COMMON/B17/FINF.BETTA.ALFHA.TO.TP.VSF.SPI . INDEX ID=1, READ AND WRITE THE INPUT DATA FOR SOLL INFILT. PARAMIS С С 2. COMPUTE INSTANT INFILTRATION RATE 3. COMPUTE CUMULATIVE INFILTRATION C С USE THE GENERALIZED KOSTIAKOV INFILTRATION EQUATION С FRATE=FINF+BETTA+(TIME-TO) ++ (-ALPHA) С FOR FRATE TO BE ALWAYS ZERO, SET FINF=0. AND BETTA=0., REGARDLESS С OF TO AND ALPHA VALUES С FRATE=INFILTRATION RATE . IN ./HR С FINF=FINAL INFILTRATION RATE, IN./HR С SPI=POTENTIAL INFILTRATION, INCHES С BETTA, TO, ALPHA=INFILTRATION PARAMETERS С TP=TIME OF PONDING, MINUTES С TP MUST BE GREATER THAN TO . OTHERWISE INVALID ALPHA VALUE MUST BE LESS THAN UNITY AND GREATER THAN ZERO, EXCLUS. C С TMLS=DIMENSIONLESS TIME C RMN=TENPORAL MEAN RAINFALL INTENSITY . IN. /HR VSF=CUMULATIVE INFILTRATION VOLUME PER UNIT SURFACE AREA, INCHES C GO TO(1,2,3), ID 1 READ(5+100) FINF (BETTA + ALP HA + TO + SPI 100 FORMAT(8F10.0) C COMPUTE TP AND TO FROM RAINSTORM AND SOIL INFILTRATION PARAMETERS DDT=T0+60.+8(12)/8(11)/20. TFPDL=DDT 16 CALL RAIN(3.TFPDL) IF((RMN-FINF).LE.D.) GOTO 15 IF(0.2*SPI*(1.-ALPHA).GT.0.) GOTO 25 BETTA=0. TTRY=0. GOTO 26 25 BETTA= (0.2*SPI*(1.-ALPHA))**ALPHA*(RMN-FINF)**(1.-ALPHA) TTRY=1./(1.-ALPHA) * (EETT A/(RMN-FINF))**(1./ALPHA) 26 IF(TTRY+60.+B(12)/B(11).GT.TFPDL) GOTO 15 NCT=0 T1=TFP DL -DDT T2=TFPDL 14 TFPDL=T1+(T2-T1)/2. NCT=NCT+1 IF(NCT.GT.50) SS=SQRT(-1.) IF((T2-T1).LT.100.*ACCU) GOTO 18 CALL RAIN(3+TFPDL) IF((RMN-FINF).LE.D.) GOTC 17 IF(0.2*SPI*(1.-ALPHA).GT.0.) GOTO 35 BETTA=0. TTRY=0. **GOTO 36** 35 BETTA=(0.2*SPI*(1.-ALPHA)) ** ALPHA*(RMN-FINF)**(1.-ALPHA) TTRY=1./(1.-ALPHA) * (BETTA/(RMN-FINE))**(1./ALPHA) 36 IF (ABS(TTRY+60.+B(12)/B(11)-TFPDL).LT.100.+ACCU) GOTO 18 IF(TTRY*60.*B(12)/B(11).GT.TFPDL) GOTO 17 T2=TFPDL

1 2

3

4

5

6

7

8

q

10

11

12

14 15

16

17

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38 39

40

41

42

43 44

45

46

47 48

49

50 51

52

53

54

55

56

	60TO 14
	17 T1=TFPDL
	GOTO 14
	15 IF(TFPDL.GE.TD*60.*B(12)/B(11)) GOTO 13
·· ·	TFPDL=TFPDL+DDT
	6070 16
	18 TP=TFPDL+B(11)/B(12)/60.
	COTO 20
	13 WRITE(6,150)
	15D FORMAT(/' THERE IS NO RUNOFF ON SIDESLOPE')
	TP=1•/ACCU+ACCU
	20 TO=ALPHA+TP
	WRITE(6+20U) FINF+BETTA+ALPHA+TO+TP+SPI
	200 FORMAT(/* SOIL INFILTRATION PARAMETERS ARE FINF = *+F8+2+* (IN+/HP
	\$) BETTA = '+F8+2+' ALPHA = '+F8+2+' TO = '+E10+4+' (MIN+) TP = '+E
	\$10.47' (MIN.) SPI = '.F8.2.' (INCHES)')
	RETURN
	2 TST=TMLS+B(11)/B(12)/60.
	CALL RAIN(2+TMLS)
	IF(TST.LE.TP) B(27)=B(32)
	IF(TST.GT.TP) B(27)=FINF+BETTA*(TST-TO)**(-ALPHA)
	RETURN
	3 CALL RAIN(3, THLS)
	RMNS=RMN
	TPL=TP+60++8(12)/8(11)
	CALL RAIN(3,TPL)
	RMNP=RMN
	TST=TMLS+B(11)/B(12)/60.
	IF(TST.LE.TP) VSF=RMNS*TST/60.
	IF{``ST.GT.TP``VSF=RMNP+TP/60.+(FINF+(TST-TP)+BETTA/(1ALPHA)+((TS
	\$ T-TO) * *(1ALPHA)- (TP-TO) * *(1ALPHA) } }/6 D.
	RETURN
	END

.

201

.

١.

SUBROUTINE INPT С COMPUTE V AND H AT INTERIOR GRID POINTS COMMON /81/ B(40).C(40).Z(10).TIME.OPH.NN.N.NCH.RSL.CURVE COMMON /B2/ H(27+27+2)+V(27+27+2)+HL(27+10+2)+HR(27+10+2)+ \$ VR (27, 10, 2), VL (27, 10, 2), VJ (27, 10, 2), XJ (27, 10, 2), JI (27, 27, 2), KN, NJJ COMMON /B3/ NK(27)+NJ(27)+DX+DT+DIST+HMIN+VHIN+ITYPE+I0+0C(27+10)+ \$S.DS COMMON /B4/ II(27,2),XI(27,2),HI(27,2),VI(27,2),GI(27,2),WI(27,2), \$CT(27+2) +CH(27+2)+CV(27+2) COMMON /85/ NG(27,27), SG(27,27), FG(27,27), NF, SF, FFF COMMON/B6/AA1.BB1.CC1.SNK.IDG.SP1.XPG1.SP2.XPG2 COMMON /B8/ ACCU+ACCUX+ACCUY+HDRY+CC COMMON /B10/ DXCH.DXRS.DDXCH.DDXRS COMMON /B14/ IWET(27) DIMENSION VV(2),FF(2) С LOCATE THE MOVING DISCONTINUITIES. IF ANY IFIITYPE.EQ.11 GO TO 1 IF(ITYPE.EQ.2.AND.N.LT.NCH) GO TO 30 IF(ITYPE.EQ.5.AND.N.LT.NCH) GO TO 30 GOTO 1 30 IF(IWET(N).EQ.1) GO TO 1 XN=FLOAT(N-1)*DXCH XW=TIME+C(30) PW=C(21)-XW IF (XW.LT.XN.AND.ITYPE.EQ.2) GO TO 32 IF(ITYPE.EG.5.AND.PW.GT. XN) GO TO 32 H0=TIME*C(26) +C(19) +B(11)+C(5)/B(16) HN=HO* (XW-XN)/XW IF(ITYPE.EG.5) HN=HO+(XN-PW)/XW IF(HN.LT.B(31)*HMIN) GO TO 32 DO 31 K=1.KN H(N+K+2)=HN XK=FLOAT(K-1)+DXRS CALL STORM(XK+D.) NCT=0 I=1 VV(1)=0.1 CALL GEOM(Z. A. HN .R .T .D .1 .1 .XK) 35 VN=VV(I) 36 CALL FRIC(VN, HN.F.R.RE, REC, IR, 1.XK) FF(I)=C(8)-C(4)+F/B(13)+ # S(VN)+VN/R IF(ABS(FF(I)).LT.ACCU)GO TO 38 IF(I.EQ.1) GO TO 37 NCT=NCT+1 IF(NCT.GT.50) GO TO 38 VN=(FF(1)+VV(2)-FF(2)+VV(1))/(FF(1)-FF(2)) VV(1)=VV(2) VV(2)=VN FF(1)=FF(2)GO TO 36 37 I=2 VV(2)=0.0001 GO TO 35 38 V(N+K+2)=VN **31 CONTINUE** IWET(N)=1

12

3

4 5

6 7

8

9

10

11 12

13

14

16 17

18 19

20

21 22

23

24

25

26 27

28

29 30

31 32

33

34 35

36

37

38

39 40

41

42

43

44 45

46 47

48

49

50

51

52 53

54

55

56

57			TE (N.F.G.NN.AND. TTYPE.F.G. 2) TTYPE=1
5.8			TEATTY DE . EO . 5 . AND . N. EO . 1 1 TTYDE-1
50			TLATILCECCOSMUCCUECCET/ TILCET
53		1.7.0	RETURN
60		5 Z	DU 33 K=10KN
61			H(NoKo2)=HDRY
62			V(N+K+2)=0.
63		33	CONTINUE
64			IWET(N)=0
65			YT (N . 2)= YT (N . 1)
60			
60	•		
67			
68		_	RETURN
69		. 1	NJP=NJJ
70			IF(NJP.EQ.U) GO TO 4
71		2	DO 3 J=1+NJP
72			CALL JUMP(J)
73		マ	CONTINUE
7/1	0	67	COMPLETE V AND 14 AT COTO DOTNE
74	L.		COMPOSE V AND H AN GRED POINT
10		**	KUP-2
76			KNN=KN-1
77			DO 23 K=2+KNN
78			IF(H(N+K+2).GT.HDRY/2.) GO TO 23
79	1. A.		XB=FLOAT(K-1)*DX
80			TTM=TTMF-DT
81	S. S. K.		CALL STORMAYB.TTM
02			TELCIOCA OF ACCUA CO TO E
02			
83			IF(IIYPE•NE•I•AND•JI(N•2•1]•G1•U) CO TO 5
84		_	IF(K.EQ.KUP.AND.H(N.K.1).LT.HDRY*2.) GO TO22
85	-	5	CALL OPHEAD
86			CALL GEOM(2+AB+H(N+K+1)+BB+TB+DB+1+1+XB)
87			TSTK=FRTST(V(N+K+1)+D8+0PH+C(1)+C(5)+C(9)+C(20)+1)
88			IF(N.EQ.1.OR.N.GE.NCH) GCTO 51
89			IF(ITYPE.EQ.2) GO TO 51
90			TE (ABS (H(N+K+1)-H(N-1+K+1)).GT.ACCU) GO TO 51
91			TE(ABS(V(N,K+1)-V(N-2,K+1)), GT, ACCH) GO TO 51
02			TELLING AND THE HORY OF TO EN
52			
93			IFVISIK+01+U+1 60 10 25
94		51	XA=XB+DX
95			XC=XB+DX
96			HC=H(N+K+1+1)
97			VC=V(N+K+1+1)
98			TE (KALTAKNN) GOTO 34
99	1.2		TE(N.GE.NCH) YCTDIST
100			
100			
101			1F(NN_EQ.1) 60 10 34
102			XC=X1(N+1)
103			PC=HI(N+1)
104			VC=VI(N+1)
105		34	CALL GEOM(2+AA+H(N+K-1+1)+RA+TA+DA+1+1+XA)
106			CALL GEOM(2, AC+HC, RC+TC+DC+1+1+XC)
107			TE (NJJ.E9.11) 60 TO 17
108			DO 6 JET +N.LI
100			TELY MALATI GT. YR AND Y MALAZI CT R I PO TO T
110		~	TI INGENTOR IN CITATION AND AND AND AND AND AND AND AND AND AN
110		ь	
111		_	
112		7	DO 8 J2=1.NJJ
113			IF(XJ(N: J2:2).GT.XB) GO TO 9

114	8	CONTINUE
115		J2=NJJ+1
116		GOTO 15
117	1 9	IF(J2-J) 10.11.15
118	10	CALL JL(XB, J2, V(N, K, 2), H(N, K, 2), \$23, 2)
119		GO TO 24
120	11	IF(XJ(N, J, 1)-DX.LT.XB) GO TO 10
121		IF(J.EQ.1) GO TO 17
122 .		J1=J-1
123	12	D0 13 JJ=1.J1
124		J3=J1-JJ+1
125		IF(XJ(N, J3,2).GT.0.) GO TO 14
126	13	CONTINUE
127		GO TO 17
128	14	IF((J2-J).6T.0) GOTO 26
129		IF((XJ(N+J3+1)+DX)+LT+XB) GOTO 17
130	26	J1=J3
131		60 TO 16
132	15	J1=J2-1
133		GO TO 12
134	16	CALL JR(XB, J1, V(N, K, 2), H (N, K, 2), \$23, 2)
135		GO TO 24
136	17	CALL CS(1. +XA+XB+XD+XB+DA+DB+DD+V(N+K-1+1)+V(N+K+1)+VD)
137		IF(TSTK.LT.O.) GC TO 18
138		CALL CS(-1.,XA,XE,XE,XB,DA,DB,DE,V(N,K-1,1),V(N,K,1),VE)
139		GO TO 19
140	18	CALL CS(-1.+XB+XC+XE+XB+DC+DC+DE+V(N+K+1)+VC+VE)
141	19	CALL CEQS(VD+DD+VE+DE+V(N+K+2)+H(N+K+2)+XD+XE+DT+DT+XB)
142 .	24	NG (N »K)= NF
143		SG(N+K)=SF
144		FC(N+K)=FFF
145		GO TO 23
146	25	N1=N-1
147		$H(N \bullet K \bullet 2) = H(N1 \bullet K \bullet 2)$
148		$V(N \circ K \circ 2) = V(N \circ 1 \circ K \circ 2)$
149		$NG(N \cdot K) = NG(N1 \cdot K)$
150		$FG(N \cdot K) = FG(N1 \cdot K)$
151		SG(N•K)=SG(N1•K)
152		60 10 23
153	20	00 21 J2=1,NJJ
154		IF (XJ(N) JZ) 21 • 61 • XB) 60 10 10
155	21	CONTINUE
155		IF TAJENENU JEIJED X. ET AKB. UK . AJENENU JE ZE . EF AUGUE GU TU IF
157		JI-NJJ
158	22	
100	~ ~	NIN-K-21-0
100		VID-VID-1 VID-VID-1
162	27	
167	23	
100		
104		

:

C	SUBROUTINE INTAL SET UP INITIAL CONDITIONS COMMON /B1/ B(4U).C(40).Z(10).TIME.OPH. COMMON /B2/ H(27.27.2).V(27.27.2).HL(27 \$VR(27.10.2).VL(27.10.2).VJ(27.10.2).XJ(COMMON /B3/ NK(27).NJ(27).DX.DT.DIST.HM	NN + N + N CH + R SL + CUR V + 1 0 + 2) + H R (27 + 10 + 2 27 + 10 + 2) + J I (27 + 27 IN + V MI N + IT YPE + IO +	E }, ,2},KN,NJ; 0C(27,10),
	COMMON /84/ II(27,2),XI(27,2),HI(27,2),	VI (27.2) +Q I(27.2)	• WI (27,2).
	\$CT(27+2)+CH(27+2)+CV(27+2)		
•	COMMON/B6/AA1+BB1+CC1+SNK+IDG+SP1+XPG1+	SP 2 + XP G2	
	COMMON /B8/ ACCU+ACCUX+ACCUY+HDRY+CC		
	COMMON /B9/ TL(10+2)+TR(10+2)		
	COMMON /B10/ DXCH+DXRS+DDXCH+DDXRS		
	COMMON /B11/ HRR+VRR	;	
	COMMON /B14/ IWET(27)		
	COMMON/B16/AAA+388;CCC,TD,RTO,RMN,RAV	•	
	DIMENSION VVVZJJFVZJJVVVVZJJJIMI (Z) DVCU-DDVCUZD(11)		
	DXEDXK22DXK22DXK22DXK22DXK22DXK22DXK22DX		
	DXPG1=XPG1/B(11)		· .
	DXPG2=XPG2/8(11)		
	DT=0.		
	NKK=(C(22)+DXPG1+DXPG2)/DX+1+99999		
	DO 4 N=1 + NN		
	NJ(N)=0		
	NK(N)=NKK		
•		•	
		*	
	TT(N.NT)=01227+DXPG1+DXPG2		
	VI(N+NT)=0.		· .
	QI(N+NT)=0.		
	WI(N+NT)=0.		
	CT(N+NT)=ACCU+0.99		
	DO 1 K=1.27		
	$H(N \circ K \circ NT) = D \circ$		
	V(N * K * NT) = 0		
	XJ(N+J+NT)=0		
	VJ(N+J+NT)=0.		
	VL(N+J+NT)=0.		
	VR(N,J,NT)=0.		
	HR(N+J+NT)=0+	·	
	$HL(N \cdot J \cdot NT) = 0$		
	4 CONTINUE		
	NJINUHJ-U DA 7 NT-1,2	,	
	$\frac{1}{2}$		
			•
	H(NCH+K+NT)=0		•
	V(NCH+K+NT)=0.		

1

;

÷

			· · · · · · · · · · · · · · · · · · ·
57			JI(NCH+K+NT)=0
58		2	CUNTINUE
59		•	
60			XJINCH+J+NIJ=U.
61			VJ(NCH+J+NIJ=U.
· 62			VLINCH+J+NIJ=U.
63			VRINCH+J+NIJ=U.
64 CF			
65		~	
65		• 3	CUNITINE
51	C		INTITAL CONDITIONS FOR FLOW ON STDESLOPE
60			
. 63			NJ(NS)-U NV(NS)-0(77)/0006(1) 00000
70			NN(NS)-01337/UARST1033333
72			NAJ-NALNJI DA 77 NT-1.2
77			DU JJ NI-LIZ NTENE NTA-CIZZA
73			A1:45+N11+C1551
74			DV JZ N-IYNNS
10			
10			
11		70	
73		32	CONTINUE
19			$\begin{array}{c} UU 33 J=1 + LU \\ V U NT J=0 \end{array}$
80			
01			
82			VERNSIJINII-U.
00			VENNSYJENTI-O
25			
86		77	CONTINUE
87		55	CALL RAIN(3.0.1)
8.8	÷.,		NET NET
89			IF(8(23).LT.ACCU) GO TO 6
90			HMIN=B(23) *C(5)/B(16)
91			ST=8(23)
92			CALL PREP
93			IF(ITYPE.EQ.3) GO TO 60
94			IF(ITYPE.EQ.6) GO TO 80
95			CALL STORM(DXRS+D.1)
96		•	Q0=DDXRS*RAV/43200.
97			ST1=(CC/8.+Q0+B(24)/(32.2+C(8)))++(1./3.)
98			ST1=ST1/5.
99	•		IF(ST.GT.ST1) ST=ST1
100			GO TO 7
101	C		ST IS DIMENSIONAL STARTING DEPTH
102	C		SH IS DIMENSIONLESS STARTING DEPTH
103	C		SV IS DIMENSIONLESS STARTING VELOCITY
104		6	H MIN=HDRY
105			ST=0.1*B(11)*C(19)*RMN/B(19)
106		7	TIME=ST/(B(11)*C(19)*RMN/B(19))
107			N CT=D
108			I=1
109			TMT(I)=TIME
110		42	CALL RAIN(3,TMT(I))
111			F(I)=TMT(I)-ST/(B(11)*C(13)*RMN/B(19))
112			IF(ABS(F(I)).LT.ACCU) GOTO 44
113			IF(I.EQ.1) GOTO 43

.

;

14			NCT=NCT+1
15			IF(NCT.GT.20) GOTO 99
16			IF(ABS(F(1)-F(2)).LT.ACCU) GOTO 44
17			TMM=(F(1)*TMT(2)-F(2)*TMT(1))/(F(1)-F(2))
.18 '			TMT(1)=TMT(2)
19			TMT(2)=TMM
20			F(1) = F(2)
21			GOTO 42
22		43	I=2
23			TMT(2)=1.1 *TIME
24			GOTO 42
25		11 LL	TTMETTMT(T)
23			CU=CT+C(E)/D(1E)
20			CN-0
. <u>4</u> 1			YEICULT UMTNI UNTN-CH
20			TEA PROCESSING TAX TREES TO
.29			
130			
31			17(100-E0-2) CHH-SH
32			IF(NN+EG+1) GO IU IU
33			CX=(CHH-SH)/SP2*8(16)/C(5)
134			C11=CX+20K1(1*-2h5++51/B(10)
135			IF(IDG.EQ.2) CTT=0.
136		9	DIST=XI(N+1)-CTT+E(10)/B(11)
137			NM=NN
38			IF(ITYPE.EQ.2) NM=2
139			IF(ITYPE.EQ.5) GOTO 5
140	С		FOR UNIFORM RAINFALL (ITYPE=1)
L4 1.			DO 8 N=1+NM
142	,		HI(N,1)=SH
L43			XI(N+1)=DIST
44			CT(N+1)=CTT
45			IWET(N)=1
46		8	CONTINUE
L4 7			GO TO 10
148	•	5	CT(NN+1)=CTT
149	C		COMPUTE H AND V FOR ALL N AND K AT NT=1
150	-	10	IF(IDG.EQ.1) NKK=NKK-1
151			DO 15 K=1+NKK
152			XK = FLOAT(K-1) + DXRS
153			CALL STORM(XK+TIME)
154			NCT=0
155			T=1
155			VV(1)=0.1
157			CCH-CH
157			CALL GEOMIZA & SSHAPATADA 1.1.4XK)
130			
155		11	0 M L EDIC/CV. 5CM.5C.D.DE.DE.C.TD.1.YK)
160		12	
161			F(T)=C(8)-C(4)*FFAB(T2)*b02(2A)*2AVK
162			IF(ABS(F(1)).LI.AULU) 60 10 14
163			17(1.EQ.1) GU 10 13
164			NCIENCI+1
165			1F(NC1.GT.5U) GO TO 99
166			SV=(F(1)*VV(2)-F(2)*VV(1))/(F(1)-F(2))
167			VV(1)=VV(2)
168			VV(2)=SV
169			F(1)=F(2)
170			GO TO 12

. 207 .

13 I=2 vv(2)=0.0001 60 TO 11 14 VVV(K)=SV **15 CONTINUE** N=N CH CALL STORM(1. .TIME) NCT=0 1=1 VV(1)=0.1 CALL GEOM(2+A+CHH+R+T+D+1+1+1+) IF(ITYPE.EQ.2) CALL GEOM(2.A.CHH.R.T.D.1.1.0.) 16 SV=VV(I) 17 CALL FRIC(SV.CHH.FF.R.RE.REC.IR.1.1.). F(I)=C(8)-C(4)*FF/B(13)*ABS(SV)*SV/R IF(ABS(F(I)).LT.ACCU) GOTO 19 IF(1.E0.1) GOTO 18 NCT=NCT+1 IF(NCT.GT.50) GOTO 99 SV=(F(1)*VV(2)-F(2)*VV(1))/(F(1)-F(2)) VV(1)=VV(2) VV(2)=SV F(1)=F(2) GOTO 17 18 I=2 vv(2)=0.0001 GOTO 16 19 SVV=SV IF(ITYPE.EG.5) GOTO 70 20 DO 22 N=1.NM DO 21 K=1.NKK H(N+K+1)=SH V(N+K+1)=VVV(K) 21 CONTINUE IF(NN.EQ.1) GO TO 24 DXK=XI(N+1)-FLOAT(NKK-1)+DXRS VI(N+1)=V(N+NKK+1)+(V(N+NKK+1)-V(N+NKK-1+1))+DXK/DXRS CALL GEOM(2+A+HI(N+1)+R+T+D+1+1+XI(N+1)) QI(N.1)=VI(N.1) +A 22 CONTINUE DO 23 K=1.NM H(NCH+K+1)=CHH V(NCH+K+1)=SVV 23 CONTINUE IF(ITYPE.E0.2) GOTO 50 N=NS CALL STORM(D. .TIME) NCT=D I=1 VV(1)=0.1 SSH=SH CALL GEOM(2+A+SSH+R+T+D+1+1+0) 26 SV=VV(I) 27 CALL FRICISY.SSH.FF.R.RE.REC.IR.1.0) F(I)=C(8)-C(4)+FF/B(13)+ABS(S;)+SV/R IF(ABS(F(I)).LT.ACCU) GOTO 29 IF(I.EQ.1) GOTO 23

171

172 173

174

176 177

178

179 180

181

182

183

184 185

186 187

188

189

190 191

192 193

194

195

196

197

198

199

200

201

202

203 204

205

206

208

209 210

211 212

213

214

215

216

217 218

219

220

221

22 Z 22 3

224 225

226

227

			· ·	
228		NCT=NCT+1		
23		IF(NCT.GT.50) GOTO 99		
230		SV = (F(1) + VV(2) - F(2) + VV(1)) / (F(1) - F(2))	1997 - 19	
771		VV(1) = VV(2)		
272		VV(2)=SV		
222				
233				
234				
235	28			
236		VV(Z)-U.UUUI		
237		6010 26		
238	- 29	SVS=SV		
239		DO 25 K=1+NKS		
24 0		H(NS+K+1)=SH		
241		V(NS+K+1)=SVS		
242	25	CONTINUE		
243	24	COTO 90	•	
244	C	FOR MOVING RAINSTORM THE DIRECTION OF MOVING RAINSTOR	M COINCIDE	S
245	ċ	WITH THAT OF CHANNEL FLOW (ITYPE=2)		
246	5.0	HRR=B(31)+HMTN		•
240	50	VRR=0.		
247 748		XTNTAL =1.5		
240		$n_{\text{NK}=\text{SRT}(1, -\text{SP}^{*})}$		
47 J 75 N		NKKK-NKK	•	
250				
251		TELN TO NCHA NYKYTNA		
252		ITTRACUANCOJ NARA-NN		
253				
254				
255				
256	. 500	CONTINUE		
257		IF(NoEQONCH) GOID SUL		
258		HI(N.1)=HORY		
259		VI(N+1)=0.		
260		CT(N,1)=HRR*CNK/SP2*B(15)/B(10)/C(5)		
261		XI(N+1)=C(22)+DXPG1+DXPG2-CT(N+1)+B(10)/B(11)		*
262	501	CONTINUE		
26 3		HL(NCH+1+1)=CHH		
264		VL(NCH+1+1)=SVV		
265		HR(NCH+1+1)=HRR		
266		VR(NCH+1+1)=VRR		
267		VJ(NCH+1+1)=SVV		
26.8		XJ(NCH+1+1)=XINTAL+DXCH		
26.9		JT(NCH+3+1)=1		
270	,	NJ(NCH)=1		
271		TWFT(NCH)=1		
272				
277		TO(1,1) = HPR * (NK/SP 2 * B(16)/B(10)/C(5)		
213				
214		- C(20) - 1 =	C(30)+B(1)	1) 1
275		11ME_SURT(SN*X1NTAL*DACH+S(16))(0+5+CtS)+Ct20++0(15)+	01007-012	
216		BUIN DU TADE D HANTHA DATNETOOK, THE DIDECTION OF MONITHE	STORM TS	THE
277	C	FUR THE 3 MUVING RAINSTORMA THE DIRECTION OF MOVING	31 UN 17 13	
278	С	SAME AS THAT OF ROAD SURFACE FLOW		
279	6			
280		HJ=1TWF+KWN\R(J3)+C(J3)+R(JT)+C(2)\R(TP)		
281		XINTAL=1.5	· _	
282		VO=H1+DXRS/2.	•	
283		HH=VO/(XINTAL +DXRS)		
284		D0 61 K=1.3		

285			XK=FLOAT(K-1)+DXRS	· •
286			IF(K.EQ.3) XK=XINTAL*DXRS	•
287			CALL STORM(XK TIME)	
28.8	•		CALL GEOM(2+A+HH+R+T+D+1+1+XK)	
28.3			V(N+K+1)=C(8)+8++32+2+R+R+B(17)++2/(CC+B)	241 + 8(12)
290			H(N+K+1)=HH	
291		61	CONTINUE	
292		01	HRR=B(31) + HMTN	
207			VOD-0	•
201				and the second
20 F			V(f(N+1)-1) = V(N+2-1)	
200	•		CALL CEOMIC ADD. HOD. HUD. TDD. DDD. 1. 1. VIII.	
230				
200				
298			X J & N & I & I J - X I W I AL * DXR J	
299				
500			JI(N+S+I)=1	
301			VR(Nolol)=VRR	
SU 2			HRINIIITHR	
30 3		63	DO 64 K=3.NKK	
30 4			H(N+K+1)=HDRY	
305			V(N+K+1)=0.	
306		64	CONTINUE	
307			GO TO 90	
30.8	C		FOR TYPE 5 MOVING STORM	
30 9		70	N=NN	
310			DO 71 K=1.NKK	
311			H(N.K.1)=SH	· .
31 2			$V(N \cdot K \cdot 1) = VVV(K)$	
31 3		71	CONTINUE	•
314			H (N CH + NN + 1)=C HH	
315			V(NCH+NN+1)=SVV	
316			CT(NN+1)=CTT	
317			IF(IDG.E3.2) CTT=0.	
318			XI(NN+1)=C(22)+DXPG1+DXPG2-CTT+B(10)/B(11	3
319			HI(NN,1)=SH	
32.0			DXK=XI(NN+1)-FLOAT(NKK-1)+DXRS	
321			VI(NN+1)=V(NN+NKK+1)+(V(NN+NKK+1)-V(NN+NK	(K-1+1))+ DXK/DXRS
322			CALL GEOM(2+A+HI(N+1)+R+T+D+1+1+XI(N+1))	
323			QI(NN+1)=VI(NN+1)*A	
32.4			NM=NN-1	
32.5			DO 73 N=1+NM	
326			DO 72 K=1+NKK	
327			H(N+K+1)=HDRY	
328				
320		72	CONTINUE	
720				
771				
22.2				
277			TETTO = CO = 21 CT(N = 11 = 0)	
771		77		
334 775		13		
222				
330 777			1 NC 11 NCTI-1	
331 770	~		500 TVD5 5 MONTHO STOCK	
558 770	C		FUR FIPE 6 MOVINU STORM	
559		รม	LUNIINUE	
54 U			UX1=U(22)+UXPG1+UXPG2-AINT((C(22)+DXPG1+C	IXPG21/DX RS1+DX RS
541			IFTUX1 LE ACCU.OR IDG F0.21 DX1=DXPS	

. 210

342		TIME=DX1/C(30)	
34 3		N=N CH	
. 34 4		CALL STORM(DXCH+TIME)	
345		CC=C(36)+C(8)++C(37)	
346		IF(CC.LT.24.) CC=24.	
347		H1=TIME*RMN/B(19)*C(19)*B(11)*C(5)/B(16)	
348		A=H1+B(16)/C(5)+DX1+B(11)/2+/B(18)	
349		CNK=SQRT(1SP2**2)	
350		HH=SQRT(2.+A+B(18)+SP2/CNK)+C(5)/B(16)	
351		T=HH+CNK/SP2/C(5)+B(16)/B(10)	
352		XRS=C(22)+DXPG1+DXPG2-T+B(10)/B(11)	
35 3		NKK=XRS/DXRS+1.93999	
354		P=HH/C(5)+B(16)+(1++1+/SP2)	
355		R=A+B(18)/P/B(17)	
356		IF(IDG.EG.2) CALL GEOM(1,A,HH,R,T,D,1,1,DXCH)	
357	401	VCH=C(8)*8.*32.2*R*R*B(17)**2/(CC*B(24)*B(12))	
358		DC 81 K=1.NN	
359		H (N CH + K + 1) = HH	
360		V(NCH+K+1)=VCH	
361		IF(IDG.EQ.2) GOTO 402	
362		XI(K+1)=XRS	
36 3		HI(K+1)=HDRY	
364		VI(K+1)=0.	·
36 5		CT(K+1)=T	
36 6		CH(K+1)=HDRY	
367		CV(K+1)=0.	
36 8		GOTO 81	
36 9	402	XI(K+1)=C(22)+DXPG1+DXPG2	
370		HI(K+1)=H(K+NKK+1)	
371		VI(K+1)=V(K+NKK+1)	
372		CT(K,1)=0.	
373	81	CONTINUE	
374		DO 83 N=1+NN	
375		DO 82 K=1+NKK	
376		H(N+K+1)=HDRY	
377		V(N•K•1)=D•	
378	82	CONTINUE	
379	83	CONTINUE	
380		ITYPE=1	
381	90	CALL ERR(1)	
382		CALL OPHEAD	
383		WRITE(6,200) HMIN,VMIN,OPH,CC	
384	200	FORMAT(' HMIN ='+F9.5+' VMIN ='+F9.5+' 0PH ='+E10.4+' C ='+E11.	5
385		TDIM=TIME+B(11)/B(12)	
386		WRITE(6,201) TIME,TDIM	
387	201	FORMAT(1H1' THE INITIAL CONDITIONS ARE :'/' TIME =',F9.3,5X.	
388	. 4	\$*(DIMENSIONAL TIME =*+F9.3,* SEC.)*)	
38 9		10=1	
390		IF(NN-EQ.1) GO TO 95	
391		IF(ITYPE.Eg.2) N=NCH	
392		IF(ITYPE.Eg.2) KJ=3	
393		TL(1,2)=TL(1,1)	
394		TR(1,2)=TR(1,1)	
395		XJ(N,1,2)=XJ(N,1,1)	
396		VJ(N+1+2)=VJ(N+1+1)	
397		VL(N+1+2)=VL(N+1+1)	
398		VR(N,1,2)=VR(N,1,1)	

:

		HR(N+1+2)=HR(N+1+1)			• •	
		HI (N+1+2)=HI (N+1+1)				
		JT(NoKJo2) = JT(NoKJo1)			, . .	
		TELITYPE-E0.31 GG TO 95				
		00 05 TAP1 - NN				
	٠					
•						
		HI(IN+2)=HI(IN+1)				
		VI(IN,2)=VI(IN,1)				• •
		QI(IN,2)=QI(IN,1)			•	
		WI(IN+2)=WI(IN+1)				
		II(IN,2)=II(IN,1)				•
		$CT(IN \cdot 2) = CT(IN \cdot 1)$				
		CH(TN+2)=CH(TN+1)			•	
		CV(TN-2) = CV(TN-1)				
	96	CONTINUE				
	55			•		
	36	DO 33 1=1+3				
		IF(1.EQ.1) N=1				
		IF(ITYPE.EQ.5.AND.I.EQ.1) N=NN				
		IF(1.EQ.2) N=NCH		•	÷	
		IF(I.EQ.3) N=NS				
		CALL PREP				
		IF(N+ITYPE.EQ.1) WRITE(6,202)			•	
2	02	FORMAT(10X+ ALSO FOR ALL SECTIONS	0F	ROAD	SURFACE	FIGHTI
-		DO 91 KTI-KN	•••		5000 402	·LUN /
					•	
	• -	V(N + K + 2) = V(N + K + 1)				
	91	CONTINUE			•	
		2(3)=1.				
		IF(N.EQ.NCH) Z(3)=0.				
		IF(N.EQ.NS) Z(3)=0.				
•		IF(ITYPE.E0.3) Z(3)=0.			•	
		CALL OUPT				
		DO 92 K=1+KN				
		H(N+K+2)=D.				
		V(N+K+2)=0			· .	
	02					
	32					
		IFUNN & COALF REIURN				
		XJ[N+1+2]=0.				
		VJ(N+1+2)=0.				
	•	VL(N+1+2)=U.				
		VR(N,1,2)=0.				-
		HR(N+1+2)=U.				
		HL(N+1+2)=U.		•		
		JI(N:KJ:2)=0				
		IF(ITYPE.EQ.3) RETURN				- 1
	97	CONTINUE				
		T1 (1.2)=T((1.1)	•			
		TO(1,2)=TD(1,1)				
		DC 34 IN-IANN				
		X1(1N+2)=X1(1N+1)				
		HI(IN,2)=0.				
		VI(IN+2)=0.			•	
		QI(IN+2)=0.				
		WI(IN+2)=0.				
		II(IN+2)=0.				
		CT(IN+2)=CT(TN+1)				
		CH(TN+2)=0.				
		······································				

403

;

456 CV(IN,2)=0	•
457 94 CONTINUE	
458 RETURN	
459 99 SSS=-1.	
460 SS=SQRT(SS)	S }
461 END	

1		STIRPOUTTNE D (YP+L-VII - HILL + TD)	••
2	r	CONDITION AND A OFFICIAL THE OFFICIAL THE OFFICIAL TANDARY	
. 7	° č	TD-1. CONDITE VI. UN AT DISCONTANTA MICH AT TE STAN AD	
ې د		ID-I COMPUTE VEC HE AT DISCUNTINUITY WHEN ALL IS LESS THAN AN	
. 4	C	ID=2 COMPOTE V. H AT GRID POINT IN LEFT-HAND SIDE OF DISCONTINUI	Ŷ
5		COMMON /B1/ B(4D)+C(4D)+Z(1D)+TIME+OPH+NN+N+NCH+RSL+CURVE	
6		COMMON /B2/ H(27,27,2) v(27,27,2) HL(27,10,2) HR(27,10,2)	
7		\$VR (27, 10, 2), VL (27, 10, 2), VJ (27, 10, 2), XJ (27, 10, 2), J I (27, 27, 2), KN, NJ	J
8		COMMON /B3/ NK(27)+NJ(27)+DX+DT+DIST+HMIN+VMIN+ITYPE+10+0C(27+10)	÷
9		\$\$+D\$	
10	•	COMMON ZRAZ ACCULLACCULLACCULLAHORY.CC	
11	C		
* 7	~		
17	. U		
72			
14		DIEEDI	
15		SS=-1.	
16		XJ1=XJ(N+J+1)	
17		K=XJ1/DX+1.99999	
18		X2=XJ1	
19		X1=FLOAT(K-1)+DX	
20		XJ2=0.	
21			
22		16 TE(JJJ) F.O.) 60 TO 15	
23		$TF(X)(X_{1}, U_{1}) = 1 + 23 = 6T = 0 = AND, X = (X_{1}, U_{1}) = 1 = 23 = 1 T = 0 TST = X = (X_{1}, U_{1}) = 1 = 1 = 13$	
24			
25			
25			
20			
21			
28		CALL GEOM(2+A2+AL(N+J+1)+R2+12+D2+1+1+XJI)	
29		IF (X2-X1 oLT.ACCUX) GOTO 4	
30		1 IF(XJ2.GT.X1) GO TO 5	
31		V1=V(N+K-1+1)	
32		CALL GECM(2+A1+H(N+K-1+1)+R1+T1+D1+1+X1)	
33		2 CALL CS(SS+X1+X2+XC+XP+D1+D2+DC+V1+V2+VC)	
34		14 IF(ID.EQ.2) GO TO 10	
35		13 IF(XC.LT.XJ2.AND.XJ(N,JJ-1,2).GT.D.) GOTO 12	
36		IF(XC.GT.X2) GOTO 6	
37		TF(XC-LT-X1) GOTO 4	
38		3 TF(SS-[T-D-]) 60 TO 8	
29			
4 n		TEID CALL OF TYPE CALL BETHON	•
40		LITTOFACTOR OF LITTOFACT & VELOVN	
4 I 4 O			
42 		VLL1=V(N+K-1+2)+(V(N+K-1+2)-V(N+K-2+2))+DX1/DX	
45		HLL1=H(N+K-1+2)+(H(N+K-1+2)-H(N+K-2+2))+DX1/DX	
44		IF(VLL.LT.VLL1) VLL=VLL1	
45		IF(HLL.GT.HLL1) HLL=HLL1	
46		RETURN	
47		4 K=K-1	
48		X1=X1-DX	
49		GO TO 1	
50		5 X1=XJ2	
51		IF(ABS(X1-X2).LT.ACCUX) RETURN 5	
52		V1 = VR(N + JJ - 1 + 1)	
53			
54			
55			
55			
30			

:

	Ma	
	VC=V2	
	GO TO 3	
	8 SS=1.	
	XE=XC	
	VF=VC	
• •		
	60 10 2	
	10 1P(XC.GT.XJ1) GOTO 11	
	GOTO 13	
	11 XPC=XP-XC	
	CALL CROSSIXP+J+2+VC+DC+VPC+DTD+SC	
	XC=XP-XPC	,
	IFISSALT-DAL COTO P	
	6070 9	•
	CALL CROSS(XP+JM+1+VC+DC+XPC+DTD+S)	SI
	XC=XP-XPC	
	IF(SS.LT.D.) GOTO 8	
	GO TO 9	
	END	

ŕ

			•
1		_	SUBROUTINE JL1(XP+J+VL+HL+VRR+HRR+\$)
2		С	USE C+ CHARACTERISTIC EQUATION AND ONE OF THE EQUATIONS OF
3	. 1	C	DISCONTINUITY TO SOLVE VL AND HL
4			COMMON /81/ 8(40),C(40),Z(10),TIME,CPH,NN,N,NCH,RSL,CURVE
5			COMMON /B2/ H(27,27,2),V(27,27,2),HL(27,10,2),HR(27,10,2),
6			\$VR(27+10+2}+VL(27+10+2)+VJ(27+10+2)+XJ(27+10+2)+JI(27+27+2)+KN+NJ
7			COMMON /B3/ NK(27) +NJ(27) +DX +DT + DIST +HM IN +V MIN + IT YPE + IO + OC(27 + 10) +
8			\$S+DS
9			COMMON /B7/ NL(27,10), NR(27,10), SL(27,10), SR(27,10), FL(27,10),
10	•		\$FR(27,10),NFJ,SFJ,FFJ
11			COMMON / B3/ ACCU+ACCUX+ACCUY+HDRY+CC
12			DIMENSION F(2)+HH(2)
13	•		DTDEDT
14			CALL GEOM(6+ ARR+HRR+HRR+TRR+DRR+1+2+XP)
15			Y_{i} (1 = X_{i} (N \circ , i = 1)
16			
17			K= x.13 / DX +1 - 39999
1.0			
10			
20			$X_1 = 0$
20			
~ ~			
22		T	$\begin{array}{c} \mathbf{C} \mathbf{I} \mathbf{V} \mathbf{U} $
డ ఎ నిగ			TE (YO (NO O - 1 12) O O O O AN (C XO (NO O - 122) O TO (1 20) X JZ-XJ (NO O - 121)
24			THEXJ2 STADA AND XJ2 ALIALISTI GUTU IS
23			
26			
21		1	5 V2=VL(N, J, I)
28	•		CALL GEOM(20A20HL(N.J.1) 0R20120D201010XJ(N.J.01))
29			IF (X2-X1-LT-ACCUX) GOTO B
30			1 IF(XJ2.GT.X1) GO TO 9
31			V1=V(N+K-1+1)
32			CALL GEOM(2+A1+H(N+K-1+1)+R1+T1+D1+1+1+X1)
33			2 CALL CS(1++X1+X2+XD+XP+D1+D2+DD+V1+V2+VD)
34			IF(DD.LT.HDRY) DD=HDRY
35			IF(XD.6T.X2) GO TO 10
36			IF(XD.LT.X1) GOTO 12
37			3 CALL GEOM(5+AD+HD+RD+TD+DD+1+1+XD)
38			T=TIME-DTD
39			CALL STORM(XD+T)
40			CALL FRIC(VD+HD+FD+RD+RED+REC+KD+1+XD)
41			CALL OPHEAD
42			SFDD=C(4)+FD+VD+ABS(VD)/(2(13)+RD)
43		C	SD, S2 ARE ENERGY COEFICIENTS AT POINTS D AND 2
44			SD=1.
45			S2=1•
45			DXD2=X2-XD
47			IF(ABS(DXD2)+LT+ACCUX) SFD2=C(8)
48			IF (ABS (DXD2) + LT + ACCUX) GOTO 20
49			SFD2=C(8)+(8(15)+(HD-HL(N+J+1))/C(5)+8(12)++2+(SD+VD+S2+V2+V2-
50			\$/64.4)/(DXD2+B(11))+C(9)
51		2	Q IF(ABS(SFDD).LT.48S(SFD2)) GCTO 4
52		3	1 SFD=SFD2
53		-	NL(N,J)=1
54			GO TO 14
55			4 SFD=(SFDD+SFD2)/2.
56		1	4 DSQ=SQRT(C(1)+(C(1)-1.)+VD+VD+C(1)+C(2D)+(DD+C(9)/C(5)+OPH))

:

57 C7=C(7)+DTD/DT C1=C(11) +DTD+(C(1)+C(20)+(C(8)-SFD)+C(26)/DD+C(19)+(C7+C(25)+C(6) 58 59 \$/C(9)-C(1)*VD+DSQ)*C(9)*C(5)+C(27)/DD*C(19)*(C(1)*VD-DSQ)*C(9)* \$C(5)+B(16)/B(10)*C(29)/(TD*DD)*(C(3)*C(2)*C(24)-C(1)*VD+DSQ)) 60 61 T=1-62 NCT=D HH(1)=HL(N+J+1)+1+1 63 64 5 HLL=HH(I) CALL GEOM(6+ ALL + HLL + HHL + TLL + DLL + 1+ 1+ XP) 65 66 ALR=ALL-ARR 67 AHLR=ALL*HHL-ARR*HHR 68 HSQ=SQRT(C(1)*C(20)/(ALL*ARR)*(AHLR/ALR*(C(9)/C(5))**2+0PH)) 69 F(I)=C(9)/(C(5)+DD)+((1.-C(1))+VD+DSQ)+(HLL-HD)+VRR+ALR+HSQ-VD-C1 70 IF(ABS(F(I)).LT.ACCU) GO TO 7 71 IF(I.EQ.1) GO TO 5 72 IF(ABS(F(1)-F(2)).LT.ACCU+ACCU) GO TO 7 NCT=NCT+1 73 74 IF(NCT.GT.20) SS=SQRT(-1.) HLL=(F(1)+HH(2)-F(2)+HH(1))/(F(1)-F(2)) 75 76 HH(1)=HH(2) 77 HH(2)=HLL 78 F(1)=F(2) 79 GO TO 5 80 6 I=2 81 HH(2)=HL(N+J+1)+1.05 82 GO TO 5 83 7 VLL=VRR+ALR+HSQ 84 CALL GEOM(2, ALL, HLL, RLL, TLL, DLL, 1, 2, XP) 85 CALL FRIC(VLL+HLL+FLL+RLL+REL+REC+IRL+2+XP) 86 FL(N.J)=FLL 87 SL(N+J)=C(4)+FLL+VLL+ABS(VLL)/(B(13)+RLL) 88 RETURN 89 8 K=K-1 90 X1=X1-DX 91 GO TO 1 92 9 X1=XJ2 93 IF (ABS(X1-X2).LT.ACCUX) RETURN 7 94 V1=VR(N, JJ-1,1) 95 CALL GEOM(2+A1+HR(N+JJ-1+1)+R1+T1+D1+1+X1) 96 GO TO 2 97 10 XD=X2 98 DD=D2 99 VD=V2 100 60 TO 3 101 12 IF(XJ2.LT.X1) GOTO 8 102 XPD=XP-XD 103 JH=JJ-1 104 CALL CROSS(XP+JM+1+VD+DD+XPD+DTD+1) XD=XP-XPD 105 106 GOTO 3 107 END

:

.

1 1			SUBDOUTTNE ID IVD - Lovon - LCD - C - TO L			
 	~		CONDUTE V AND ILON DECTON 101 DE THE DECONTENTEN			
2	2	. 1	COMPUTE V AND H UN RECTON 'R' OF THE DISCUNITNUTIV			
3	U A		IDEL COMPUTE VR AND HR AT DISCONTINUITY WHEN AL IS	GRE	ATER	THAN F
4	C		IU=2 COMPUTE V AND H AT GRID POINT IN RIGHT-HAND	SIDE	OF DI	SCONTI.
5			COMMON /B1/ B(4D)+C(4D)+7(1D)+TIME+OPH+NN+N+NCH+R	SL + CUP	RVF	
6			COMMON /B2/ H(27+27+2)+V(27+27+2)+HL(27+10+2)+HR(2	27,10	2),	
7			\$VR (27, 10, 2) + VL (27, 10, 2) + VJ (27, 10, 2) + XJ (27, 10, 2) + J	[127.3	27.21	-KN-N.I.
8			COMMON /B3/ NK(27) .N. 1(27) . DY .DT. DTST .HMTN . WMTN .TT	VDE . TO		27-101-
9			¢C-DC		50000	2102010
10 .			CONNON (PO / ACCULACCUM ACCUM UDDM CO			
10			CUMMON / DO/ ACCUTACEUX FACEUT FHORT FEC			•
11			100=0			
12	С		SS=1. FOR C+			
13	С		SS=-1. FOR C-			
14			DTD=DT	5		
15			DTE=DT			
16			\$227.			
17						
10					-	
18			K=XJ1/DX+1.99999			
19			X1=XJ1			
20			X2=FLOAT(K)+DX			
21			XJ2=DIST			
22			JJ=J			
23		16	IF(JJ.GF.NJJ) GO TO 15			
24			TETAL No. 141 -21 - GT - B - AND Y HAN HAT 21 - IT DISTA Y	12- V 1(
25			TEINIS IT DIST_ACCHAI ON TO AC	12-201		+1+1)
25			11 (X Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z			
20						
21			60 70 16			
28		15	$V1 = VR(N_0 J_0 1)$			
29			CALL GEOM(2, A1, HR(N, J, 1), R1, T1, D1, 1, XJ1)			
30			IF(X2-X1.LT.ACCUX) GOTO 4			
31		1	IF(XJ2.LT.X2) GO TO 5			
32			V2=V(N,K,1)			
33			CALL SECME 2. 42. HIN .K .1 1. 52. T2. 02.1.1 V21			
74		2				
75		1 1				
35		14				
36		13	1F (XC.GT.XJZ.AND.XJ(N,JJ+1+2).GT.D.) GOTO 12			
37			IF(XC.LT.X1) GOTO 6			. •
38			IF(XC.GT.X2) GOTO 4			
39		- 3	IF(SS.GT.O.) GO TO 8			
40		9	CALL CEQS(VD+DD+VC+DC+VRR+HRR+XD+XC+DTD+DTE+XP)			
41			RETURN			
47		4	¥2=¥2+DX			
47		-				
45						
		-				
45		5	XZ=XJ2			
46			IF (ABS(X1-X2).LT.ACCUX) RETURN 5			
47			V2=VL(N+JJ+1+1)			
48			CALL GEOM(2+A2+HL(N+JJ+1+1)+R2+T2+D2+1+1+X2)			
49			60 TO 2			
50		6	XC=X1			
51		-	VC=V1			
52			DC=01			
57						
		~				
24		8	22= * T•			
55			XD=XC			
56			V D= V C			

:

57 DD=DC 58 DTD=DTE 59 GO TO 2 18 IF(XC.LT.XJ1) 6010 11 60 60T0 13 11 XPC=XP-XC 61 62 CALL CROSSIXP.J. 1. VC.DC. XPC.DTE.SSI 63 64 XC=XP-XPC 65 IF(SS.GT.D.) GOTO 8 66 GOTO 9 67 12 XPC=XP-XC JP=JJ+1 68 69 CALL CROSS(XP+ JP+2+VC+DC+XPC+DTE+SS) 70 XC=XP-XPC 71 IF(SS.GT.D.) GOTO 8 72 GO TO 9 73 END

;

:

		8
1		SUBROUTINE JR1(XP+J+VL+HLL+VRR+HRR+\$)
2	C	USE C- CHARACTERISTIC EQUATION AND ONE OF THE EQUATIONS OF
3	C	DISCONTINUITY TO SOLVE VE AND HR
4.		COMMON /31/ 8(40).C(40).7(10).TIME.CPH.NN.N.N.N.N.CH.RSL.CURVE
5		CONMON /B2/ H(27,27,2), V(27,27,2), H(27,10,2), HR(27,10,2),
с .		
7		= 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0
		COMMON 7657 NR(2774NG(27140AU)401514MAIN4111111111111111111
8		\$5+05
9		COMMON /B7/ NL(27.10) NR(27.10) SL(27.10) SR(27.10) FL(27.10)
10	•	\$FP(27+10)+NFJ+SFJ+FFJ
11		COMMON /B3/ ACCU+ACCUX+ACCUY+HDRY+CC
12		DIMENSION F(2)+HH(2)
13	•	DTE=DT
14		CALL GEOM(6+ALL+HLL+HHL+TLL+DLL+1+2+XP)
15		XJ1=XJ(N+J+1)
16		NR(N+J)=0
17		K=X-3120X+1.99999
18		X1 = X J1
19		X2=FLOAT(K)+DX
20		Y 12-DIST
20		
21		
46		$\begin{array}{c} \textbf{10} \textbf{17} \textbf{00} \textbf{00} \textbf{01} \textbf{01} $
23 05		
24		IF (XJ2 6 6 + U + AND + XJ2 + L { + UISI } 60 (0 15
25		
26		6010 16
27		15 V1=VR(N.J.1)
28	•	CALL GEOM(2+A1+HR(N+J+1) R 1+T1+D1+1+1+XJ1)
29		IF(X2-X1.LT.ACCUX) GOTO 8
30		1 IF(XJ2.LT.X2) 60 TO 5
31		V2=V(N+K+1)
32		CALL GEOM(2+A2+H(N+K+1)+R2+T2+D2+1+1+X2)
33		2 CALL CS(-1.,X1,X2,XE,XP,D1,D2,DE,V1,V2,VE)
34		IF(DE.LT.HDRY) DE=HDRY
35		IF(XE.LT.X1) GO TO 10
36		IF(XE.GT.X2) GOTO 12
37		3 CALL GEOM(5+AE+HE+RE+TE+DE+1+1+XE)
38		T=TIME-DTE
39		CALL STORM(XE+T)
40		CALL FRIC(VESHESFESRESREESRECSKES1 *XE)
41		CALL OPHEAD
42		SFEE=C(4)*FE*VE*ABS(VE)/(8(13)*RE)
43	с	SE+S1 ARE THE ENERGY COEFICIENTS OF POINTS E AND 1
44	•	SF=1.
45		C1-1
46		
40		
4.8		
70		
43 50		<pre>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>></pre>
5U 84		9/07/9/////////////////////////////////
21		CO TLIADOJECITELITADOJECTELI POLO 4
5Z		
55		NK(N)JJ=1
54		60 10 14
55		4 SFE=(SFEE+SF1E)/2.
55		14 DSQ=SQRT(C(1)+(C(1)-1.)*VE*VE+C(1)*C(20)*(DE*C(9)/C(5)+OPH))

Ş

:

57 C7=C(7)+DTE/DT C1=C(11)+DTE+(C(1)+C(2D)+(C(8)-SFE)+C(26)/DE+C(19)+(C7+C(25)+C(6) 58 59 \$/C(9)-C(1)*VE+DSQ)*C(9)*C(5)+C(27)/DE+C(19)*(C(1)*VE+DSQ)*C(9)* \$C(5)+B(16)/B(10)*C(29)/(TE*DE)*(C(3)*C(2)*C(24)-C(1)*VE+DSQ)) 60 I=1 61 NCT=D 62 63 HH(1)=HR(N.J.1) 5 HRR=HH(I) 64 CALL GEOM(6+ ARR+ HRR+ HHR+ TRR+ DRR+1+1+ XP) 65 ALR=ALL-ARR 66 AHLR=ALL+HHL-ARR+HHR. 67 HSQ=SQRT(C(1)*C(2D)/(ALL *ARR)*(AHLR/ALR*(C(9)/C(5))**2+0PH)) 68 F(I)=C(9)/(C(5)*DE)*((1.-C(1))*VE-DSQ)*(HRR-HE)+VLL+ALR*HSQ-VE-C1 69 70 IF(ABS(F(I)).LT.ACCU) GO TO 7 IF(I.EQ.1) GO TO S 71 IF(ABS(F(1)-F(2)).LT.ACCU*ACCU) GO TO 7 72 NCT=NCT+1 73 74 IF(NCT.GT.20) SS=SQRT(-1.) 75 HRR=(F(1)*HH(2)-F(2)*HH(1))/(F(1)-F(2)) 76 HH(1)=HH(2) 77 HH(2)=HRR 78 F(1)=F(2) GO TO 5 79 80 6 I=2 HH(2)=HH(1)+1.01 81 82 GO TO 5 83 7 VRR=VLL+ALR+HSQ CALL GEOM(2+ARR+HRR+RRR+TRR+DRR+1+2+XP) 84 85 CALL FRIC(VRR+HRR+FRR+RRR+RER+REC+IRR+2+XP) FR(N,J)=FRR 86 87 SR(N+J)=C(4)*FRR+VRR+ABS(VRR)/(B(13)*RRR) 88 RETURN 89 8 X2=X2+DX 90 K=K+1 91 GO TO 1 92 9 X2=XJ2 IF(ABS(X1-X2).LT.ACCUX) RETURN 7 93 94 V2=VL(N:JJ+1.1) 95 CALL GEOM(2+A2+HL(N+JJ+1+1)+R2+T2+D2+1+1+X2) 96 GO TO 2 97 10 XE=X1 DE=D1 98 99 ' VE=V1 100 GO TO 3 12 IF (XJ2.GT.X2) GOTO 8 101 102 XPE=XP-XE 103 JP=JJ+1 CALL CROSS(XP+JP+2+VE+DE+XPE+DTE+-1) 104 105 XE=XP-XPE 6010 3 106 107 END

;

1 SUBROUTINE JUMP(J) 2 C COMPUTE XJ AND VJ OF THE DISCONTINUITY COMMON /B1/ B(40)+C(40)+Z(10)+TIME+CPH+NN+N+NCH+RSL+CURVE 3 COMMON /B2/ H(27+27+2)+V(27+27+2)+HL(27+10+2)+HR(27+10+2)+ 4 \$VR(27+10+2)+VL(27+10+2)+VJ(27+10+2)+XJ(27+10+2)+JI(27+2)+KN+NJ 5 6 COMMON /B3/ NK(27) +NJ(27)+ DX+DT+DIST+HMIN+VMIN+ITYPE+I0+OC(27+10)+ 7 \$S+DS 8 COMMON /B8/ ACCU+ACCUX+ACCUY+HDRY+CC q COMMON/B9/ TL(10+2)+TR(10+2) 10 DATA NAME/ JUMP / IF(J.EQ.1) J2=0 11 12 IF(J2.GT.0) GO TO 50 13 IF (ABS(HL(N+J+1)-HR(N+J+1))+LT+ACCU) RETURN 14 J1=J 15 J3=J 16 K1=XJ(N.J1.1)/DX+1.99999 17 XE2=XJ(N+J1+1)+VJ(N+J1+1)+DT 18 IF(XE2.LT.0.) GO TO 7 19 IF(J1.EQ.NJJ) GO TO 1 20 XE3=XJ(N,J1+1,1)+VJ(N,J1+1,1)+DT 21 IF(XE2.LT.XE3) GO TO 1 22 С TWO DISCONTINUITIES CROSS EACH OTHER TO PRODUCE A NEW DISCONTINUI Y 23 J2=J1+1 24 J3=J2 25 DTT=DT 26 DT=(XJ(N+J2+1)-XJ(N+J1+1))/(VJ(N+J1+1)-VJ(N+J2+1)) 27 TIME=TIME-DTT+DT 28 XE2=XJ(N+J2+1)+VJ(N+J2+1)+DT 29 KK2=XE2/DX+1.999999 30 KK1=KK2-1 31 H1=H(N+KK1+1) 32 V1=V(N+KK1+1) 33 XJ1=XJ(N+J1+1) 34 VJ1=VJ(N.J1.1) 35 VL1=VL(N,J1,1) 36 VR1=VR(N+J1+1) 37 HR1=HR(N+J1+1) 38 HL1=HL(N+J1+1) 39 HL2=HL(N+J2+1) 40 HR2=HR(N+J2+1) VR2=VR(N+J2+1) 41 42 VL2=VL(N+J2+1) 43 VJ2=VJ(N.J2,1) 44 XJ2=XJ(N+J2+1) 45 V2=V(N.KK2.1) 46 H2=H(N+KK2+1) 47 CALL GEOM(2.AL1.HL 1. RL 1. TL 1. DL1.1. 1. XJ1) CALL GEOM(2+ AR2+ HR 2+ RR 2+ TR 2+ DR 2+1+1+ XJ2) 48 49 IF(AL1.GT.AR2) GO TO 19 50 CALL JL(XE2, J1, VLL, HLL, \$25,1) 51 CALL JR1 (XE2+J2+VLL+HLL+WR+HRR+\$26) 52 GO TO 20 53 19 CALL JR(XE2+J2+VRR+HRR+\$26+1) 54 CALL JL1 (XE2, J1, VLL, HLL, VRR, HRR, \$25) 55 20 XKK2=FLOAT(KK2-1)+DX 56 XKK1=XKK2-DX

;

57		CALL JL(XKK1+J1+V(N+KK1+2)+H(N+KK1+2)+\$49+2)
5.9		CALL JR(XKK2, 12+V(N+KK2+2)+H(N+KK2+2)+\$49+2)
50		CALL GEON(2,ALLAND) ADD ADD ADD AT 2, 2, YE2)
55		CALL CCOM/2, ADD, HDD, DDD, TDD, DDD, 1, 2, YE2)
C 1		
61		XJI-IALLIVLL-ARRIVERI/IALL-ARRI
62		DI=DII-DI
· 63		TIME=TIME+DT
64		HL(N,J2,1)=HLL
65		HR(N,J2,1)=HRR
66		VR(NoJ201)=VRR
67	•	VL(N,J2,1)=VLL
68		VJ(N+J2+1)=XJT
69		XJ(N,J2,1)=XE2
70		XJ(NoJ101)=0.
71		XE2=XE2+XJT*DT
72		IF(XE2.GT.DIST) CO TO 11
73		CALL CONJ(XE2+J2+VLL+HLL+VRR+HRR+\$7)
74		DT=DTT
75		V(NoKK1.1)-V1
76		
77		
70		
70		V 1 (N = 17 - 3) - V 11
19		
00		AO(MADIAI)-ADI
81		VL(NeJ1+1)=VL1
8 Z		VR(N,J1,1)=VR1
83		HR(NoJ1o1) = HR1
84		HL(N+J1+1)=HL1
85		HL(N,J2,1)=HL2
86		HR(N,J2,1)=HR2
87		VR(N, J2, 1)=VR2
88		VL(N+J2+1)=VL2
89		VJ(N+J2+1)=VJ2
90		XJ(N,J2,1)=XJ2
91		GO TO 4
92	С	THERE IS SINGLE DISCONTINUITY
93		1 J2=0
94		J3=J
95		IF(XE2.GT.DIST) GO TO 11
96		CALL CONJ(XE2+J+VLL+HLL+VRR+HRR+\$7)
97		4 IF(VLL.LT.VRR) GO TO 7
98		CALL GEOM(2+ALL+HLL+RLL+TLL+DLL+1+2+XE2)
99	•	CALL GEOM(2+ ARR+HRR+RR+ TRR+DRR+1+2+ XE2)
100		XJT=(ALI +VLI -ARR+VRR)/(ALI -ARR)
101		CALL STORMLYF2.TTMEN
102		CALL OPHEAD
107		TELALL GT. APPL GOTO 6
104		FRD-FDTST(/VRD-Y,IT), DRP, (PH, (1), ((5), (9), (120), 1)
105		EDI-EDICT/(W) _Y IT . OU . COU. C(1) . C(5) . C(0) . C(20) . 1
100		TELET CT C AND EDD IT C I CATA 4
107		ATTREDICUSS ANDSERROLISUS FOUND C
10-0 TU (0010 / C EDO-COTCT(/VIT_VED), DDD, COU C(1), C(C), C/ON, C/OOL ()
100		D FRR-FRISILIXUITARRIFERRIORRIOLIIFULSIPULSIPULSIPULSUIT
TOR		FRE = FRESTERSTERSTERSTERSTERSTERSTERSTERSTERST
110		LFIFKL+LI+U++ ANU+FRR+GI+U+)GO TO 8
111		/ DO 9 JJ=J1+J3
112		XJ(N+JJ+2)=0.
117		9 CONTINUE

114	RETURN
115	8 DO 10 JJ=J1, J3
116	XJ(N+JJ+2)=XE2
117	VJ(N+JJ+2) = XJT
118.	$VL(N_{P}JJ_{P}2) = VI1$
119	VR(N,JJ,2)=VRR
120	HR (N+JJ+2) =HRR
121	HL(N+JJ+2) = HLL
122	IF(N.EQ.NCH) TL(JJ 2)=TL1
123	IF(N.EQ.NCH) TR(JJ,2)=TRR
124	OC(N+JJ)=NAME
125	10 CONTINUE
126	RETURN
127	25 CALL CONJIXE2, J2, VLL .HEL .VRR .HRR . 571
128	GO TO 20
129	26 CALL CONJIXE2. J1. VLL .HLL .VRR .HRR . \$71
130	GO TO 20
131	11 DO 15 JJ=J1+J3
132	XJ(N,JJ,2)=DIST+1.
133	15 CONTINUE
134	RETURN
135	49 SS=SQRT(-1.)
136	50 J2=0
137	RETURN
138	END

SUBROUTINE NEWJ 1 TO SEARCH NEW DISCONTINUITY. IF ANY 2 С COMMON /B1/ B(40), C(40), Z(10), TIME, OPH, NN .N .N CH.R SL, CURVE 3 COMMON /B2/ H(27+27+2)+V(27+27+2)+HL(27+10+2)+HR(27+10+2)+ 4 \$VR(27+10+2)+VL(27+10+2)+VJ(27+10+2)+XJ(27+10+2)+JI(27+27+2)+KN+N_J 5 COMMON /B3/ NK(27)+NJ(27)+DX+DT+DIST+HMIN+VMIN+ITYPE+I0+OC(27+10)+ 6 \$S.DS 7 COMMON / B4/ II(27.2).XI(27.2).HI(27.2).VI(27.2).GI(27.2).WI(27.2). 8 \$CT(27+2)+CH(27+2)+CV(27+2) 9 COMMON/B6/AA1, B31, CC1, SNK, IDG, SP1, XPG1, SP2, XPG2 10 COMMON /B8/ ACCU+ACCUX+ACCUY+HDRY+CC 11 COMMON /89/ TL(10,2),TR(10,2) 12 COMMON /E10/ DXCH+DXRS+DDXCH+DDXRS 13 14 DIMENSION F(2) X(2) DATA NAME/ NEWJ / 15 KNN=KN-1 16 DO 30 K=3.KNN 17 IF(JI(N.K.2).GT.0) GO TO 30 18 19 IF(V(N+K+2).GT.V(N+K-1+2)-ACCU) GO TO 30 20 DXA=DX DXC=DX 21 KA=K-1 22 KAA=K-2 23 KC=K+1 24 HA=H(N+KA+2) 25 26 VA=V(N+KA+2) HB=H(N+K+2) 27 V8=V(N+K+2) 28 HAA=H(N+KAA+2) 29 VAA=V(N+KAA+2) 30 31 HC=H(N+KC+2) VC=V(N+KC+2) 32 1 IF(JI(N+KC+2).GT-0) 60 TO 15 33 34 2 IF(JI(N+KA+2).GT.D) GO TO 18 21 I=1 35 36 NCT=0 X(1)=0. 37 3 XX=X(I) 38 39 HRR=HB+(HB-HC) *XX/DXC VRR=VB+(VB-VC) *XX/DXC 40 HLL=HA+(HA-HAA)+(DX-XX)/DXA 41 42 VLL=VA+(VA-VAA)+(DX-XX)/DXA XJZ=FLOAT(KA) *DX-XX 43 44 CALL STORM(XJ2.TIME) 45 CALL OPHEAD CALL GEOM (6 + ARR + HRR + HHR + TRR + DRR + 1 + 2 + XJ2) 46 47 CALL GEOM(6. ALL, HLL, HHL, TLL, DLL, 1. 2. XJ2) IF(ABS(ARR-ALL).LT.ACCU) GO TO 30 48 IF(ALL*ARR.LT.O.) GOTO 30 49 F(I)=EQDIS(ALL,VLL,HHL,ARR,VRR,HHR,OPH,C(1),C(5),C(9),C(20)) 50 51 IF(ABS(F(I)).LT.ACCU) GO TO 5 IF(I.EQ.1) GO TO 4 52 IF(NCT.EQ.D.AND.F(1)*F(2).GT.D.) GO TO 30 53 NCT=NCT+1 54 IFINCT.GT.201 GO TO 30 55 56 XX=(F(1) *X(2)-F(2) *X(1))/(F(1)-F(2))

225

57		IF(XX.LT.DOR.XX.GT.DX) GO TO 30
58		X(1)=X(2)
59		X(2)=XX
60		F(1)=F(2)
61		GO TO 3
6 Z	4	I=2
63		X(2)=DX
64		GO TO 3
65	5	IF(HLL.LT.HMIN.OR.HRR.LT.HMIN) GO TO 30
66		XJT=(ALL+VLL-ARR+VRR)/(ALL-ARR)
67		IF(ALL.GT.ARR) GOTO 5
68	•	FRL=FRTST((VLL-XJT)+DLL+0++C(1)+C(5)+C(9)+C(20)+1)
69		FRR=FRTST((VRR-XJT), DRR, OPH, C(1), C(5), C(9), C(20), 1)
70		IF(FRL.LT.DOR.FRR.GT.D.) GOTO 30
71		GOTO 7
72	- 6	FRL=FRTST((XJT-VLL)+DLL+0PH+C(1)+C(5)+C(9)+C(20)+1)
73		FRR=FRTST((XJT-VRR)+DRR+OPH+C(1)+C(5)+C(9)+C(20)+1)
74		IF(FRL.GT.DOR.FRR.LT.D.) GOTO 30
75	7	JI(N+K+2)=1
76		IF(NJJ.GT.D) GO TO 8
77		J=1
78		GO TO 12
79	8	DO 9 J=1.NJJ
80		IF(XJ(N+J+2).GT.XJ2) GO TO 10
81	9	CONTINUE
82		J=NJJ+1
83		GO TO 12
84	10	DO 11 JJJ=JiNJJ
85		L+LLL-LLN=LL
86	•	XJ(N+JJ+1+2)=XJ(N+JJ+2)
87		VJ(N+JJ+1+2)=VJ(N+JJ+2)
88		VL(N+JJ+1+2)=VL(N+JJ+2)
89		VR(N+JJ+1+2)=VR(N+JJ+2)
90		HR(N * JJ + 1 * 2) = HR(N * JJ * 2)
91		$HL(N \cdot JJ + 1 \cdot 2) = HL(N \cdot JJ \cdot 2)$
92		OC(N+JJ+1)=OC(N+JJ)
93	11	CONTINUE
94	12	NJJ=NJJ+1
95		NJ(N)=NJJ
96		XJ(N+J+2)=XJ2
97		VJ(N+J+2)=XJT
98		VL(N+J+2)=VLL
99	•	
100		
101		
102		OCTO TO TO
100	15	
105	15	
105		TELY HAN 1-2) GT VKI CO TO 17
107	16	
102	17	
100	11	
110		
111		
112	1 8	
117	10	
***		00 10 00-11000

\$

114			J=NJJ-JJ+1	· •
115			IF(XJ(N+J+2)+LT+XKA) GO TO 20	
116		19	CONTINUE	
117		20	HAA=HR(N+J+2)	
118			VAA=VR(N+J+2)	
119		-	DXA=XKA-XJ(N+J+2)	
120			GO TO 21	
121		30	CONTINUE	
122	С		TO CALCULATE THE TOP WIDTH OF DISCONTINUITIES OF GUTTRT	FLOW
123			IF(NN.EQ.1) RETURN	
124			IF(IDG.NE.1) RETURN	
125			IF(N.NE.NCH.OR.NJJ.EG.D) RETURN	
126	·		DO 40 J=1+NJJ	
127			K=XJ(NCH+J+2)/DXCH+0+99999	
128			XK=FLOAT(K-1)+DXCH	
129			DXKJ=XJ(NCH+J+2)-XK	
130			IF(J.EQ.1) GO TO 31	\$
131			IF (XJ(NCH, J-1.2).LT. XK-D XCH) GO TO 31	
132			DXJ1K=XK-XJ(NCH+J-1+2)	
133			TL (J+2)=CT (K+2)+(CT(K+2)-TR (J-1+2))+DXKJ/DXJ1K	
134			GO TO 32	
135		31	TL(J+2)=CT(K+2)+(CT(K+2)-CT(K-1+2))+DXKJ/DXCH	
136		32	DXJK1=XK+DXCH-XJ(NCH+J+2)	
137			IF(J.EQ.NJJ) GO TO 33	
138			IF(XJ(NCH+J+1+2).GT.XK+2.+DXCH) GO TO 33	
139			DXK1J1=XJ(NCH+J+1+1)-XK-DXCH	
140			TR(J+2)=CT(K+1+2)+(CT(K+1+2)-TL(J+1+1))+DXJK1/DXK1J1	
141			GO TO 40	
142		33	TR(J+2)=CT(K+1+2)+(CT(K+1+2)-CT(K+2+2))+DXJK1/DXCH	
143			IF(K.GE.NN-1) TR(J.2)=TR(J.1)	
144		40	CONTINUE	
145			RETURN	
146			END	

SUBROUTINE OPHEAD COMPUTE THE OVERPRES SURE HEAD DUE TO RAINDROP IMPACT COMMON /B1/ B(35)+C(35)+Z(10)+TIME+OPH+NN+N+NCH+RSL+CURVE B68=B(6)+B(8) OPH=C(7)+B(20)++2+C(26)+C(19)+C(25)+COS(B68)/C(1) RETURN END

;

С

SUBROUTINE OUPT 1 С OUTPUT THE RESULTS OF COMPUTATION 2 COMMON /B1/ B(40), C(40), Z(10), TIME, OPH, NN, NCH, RSL, CURVE 3 4 COMMON /B2/ H(27+27+2)+V(27+27+2)+HL(27+10+2)+HR(27+10+2)+ \$VR(27,10,2),VL(27,10,2),VJ(27,10,2),XJ(27,10,2),JI(27,27,2),KN,N J 5 COMMON /B3/ NK(27) +NJ(27) + DX +DT + DIST +HMIN + VMIN + IT YPE + IO + OC(27,10) + 6 \$S+DS 7 COMMON /B4/ II(27,2),XI(27,2)+HI(27,2)+VI(27,2)+QI(27,2)+WI(27,2)+ 8 9 \$CT(27,2),CH(27,2),CV(27,2) COMMON /85/ NG(27+27)+ SG(27+27)+FG(27+27)+NF+SF+FF 10 11 COMMON/B6/AA1+BB1+CC1+SNK+IDG+SP1+XPG1+SP2+XPG2 COHMON /B3/ ACCU+ACCUX+ACCUY+HDRY+CC 12 IF(KN.LT.2) RETURN 13 14 NS=NCH+1 CALL RAIN(2.TIME) 15 15 B(27)=0. IF(N.EQ.NCH.AND.B(5).GT.D.3) CALL INFLT(2.TIME) 17 IF(N.GT.NCH.AND.B(35).GT.D.3) CALL INFLT(2.TIME) 18 19 WRITE(6+100) 8(32)+8(27) 100 FORMAT(/' RAINFALL INTENSITY = '.FG.2.' (IN./HR) INFILTRAION RAT -20 \$= ".E8.3." (IN./HR)") 21 CALL CRISEC 22 23 IF(NJJ.GT.O) CALL WRITJ 24 WRITE(6,200) 200 FORMAT (/4X + "X"+6X + "V"+7X +"H"+7X+"Q"+ 5X +"FROUDE"+2X+"REYNOLDS"+2X+ 25 \$*CRI RE*+2X+*F*+3X+*FRIC*+4X+*SLOPE F*+2X+*E*+3X+*V(FPS)*+3X+ 26 27 \$*H(FT) *+4X+*Q(CFS) *) KNM=KN 28 29 IF(N.LT.NCH.AND.IDG.EQ.1) KNM=KN-1 30 DO 10 K=1.KNM 31 IF(ITYPE.EQ.5.AND.N.EQ.NCH.AND.K.EQ.1) GO TO 10 HH=H(N+K+2) 32 IF(HH.LT.HDRY+1.01) GO TO 10 33 34 1 VV=V(N+K+2) XK=FLOAT(K-1)*DX 35 CALL GEOM(2+A+HH+R+T+D+1+2+XK) 36 CALL STORM(XK+TIME) 37 CALL OPHEAD 38 39 Q=VV*A CALL FRIC(VV+HH+F+R+RE+REC+KF+2+XK) 40 VEL=VV*8(12) 41 42 HEI=HH*B(16)/C(5) FR=FRTST(VV+D+OPH+C(1)+C(5)+C(9)+C(20)+2) 43 44 FLOW=VEL*A*B(18) 45 IF(K.EQ.1) GO TO 14 WRITE(6,201)XK,VV,HH, Q,FR, RE, REC, KF, FG(N,K), SG(N,K), NG(N,K), VEL 46 47 \$.HEI.FLOW 48 201 FORMAT (F6.3,2F8.4,E9.3,F8.4,2E9.3,I3,2E9.3,I3,3E9.3) 49 60 TO 10 14 WRITE(6,207)XK,VV,HH,O,FR,RE,REC,KF,VEL,HEI,FLOW 50 207 FORMAT (F6.3, 2F8.4.E9.3, F8.4, 2E9.3, I3, 4X, '--', 7X, '--', 5X, '-', 3E9.3) 51 **10 CONTINUE** 52 53 16 IF(NN.EQ.1) RETURN 54 IF(Z(3).LT.0.5) GO TO 15 55 WRITE(6,202) **)/* 56 202 FORMAT(/54(* THE CONDITIONS ON INTER BOUNDARY ARE: 1/1 N * •

<i>~</i> 7	**************************************
51	
58	
53	
60	
61	
62	CALL STURNAL (W/L/V/Inc)
63	$c_{A,L} = c_{A,L} c_{A,L} + T(N + 2) c_{A,L} + T($
64	
65	CALL = CEUM (24AFCH(M) / 2) ARK(M) RANDARA (1 / 2) A (
66	
67	
68	
69	9 FRL=FRIST(W1(N,2)-V1(N,2)-V0(DPRO(1)+O(SPRO(2)+O(2)+O(2)+O(2)+O(2)+O(2)+O(2)+O(2)+
70	
71	6010 4
72	3 + R = R + R + R + R + R + R + R + R + R
73	
74	4 WRITE (6,203) NoXI(No23) HI (No23) VI(No23) GI(No23) FR of RRO
75	\$CH(N+2)+CV(N+2)+N1(N+2)+C1(N+2)
76	203 FORMAT(14+3F7-4+2E9-3+E9-3+2F7-4+2F8-4)
77	
78	11 WRITE(6,205)N.XIIN,2 J.HI W.2 J.VIIN.2 J.VIIN.2 J.FR. CIN.2 J.
79	205 FORMAT(14+3F7-4+2E9-3+5X+*
80	12 CONTINUE
81	N=NNN
82	RETURN
83	15 IF (N.NE.NCH) RETURN
84	IF (V(NCH+NN+Z)+LT+ACCU) RETURN
85	QINLET=Q-C(28)
86	QDIN=FLOW-B(28)
87	WRITE(6,204) GINLET, GDIN
88	204 FORMAT(/* FLOW THROUGH INLET IS Q = *•E9•3•* (DIMENSIONAL DISCH F
89	\$GE Q = '+E9.3+' CFS)')
90	RETURN
91	END

1		SUBROUTINE PACKA
2	С	ELIMINATE ANY DISCONTINUTY WHICH DISAPPEARS
3		COMMON /B1/ B(40) + C(40) + Z(10) + TIME + OPH + NN + N + N + PSI + CUPYE
4		COMMON /B2/ H (27 • 27 • 2) • V (27 • 27 • 2) • H (27 • 10 • 2) • H B • 27 • 10 • 2)
5		\$VR(27,10,2), VI (27,10,2), VI (27,10,2), VI (27,10,2), VI (27,10,2), VI (27,10,2)
ŝ		
7		COMPONENTS WK12// WG12/ WGX40/ WG13/ WMIN+II YPE+IU+UC(2/+IU)+
8		* 2703 COMMON (P77) NU (27-10) NU(27-10) EL(27-10) ED(27-10) EL(27-10)
0		COMPARATION NET 221 TO 10 NO 22 10 10 10 10 10 10 10 10 10 10 10 10 10
10		PERIOD AND A CONTRACTION A CONTRACTION AND
11		
37		
17	· · · · ·	
10		
14		
12		1F(X3(N, J, Z), G1, D1S1) 6010 19
10		IF (XJ(N, J, Z), GT, D, AND, ABS(XJ(N, J+1, 2) - XJ(N, J, 2)), GT, ACCUIGO TO 2
11		19 D0 21 JJ=J•NJP
18		XJ (N+JJ+2) = XJ (N+JJ+1+2)
19		VJ(N+JJ+2)=VJ(N+JJ+1+2)
20		VL (N+JJ+2) = VL (N+JJ+1+2)
21		VR(N+JJ+2) = VR(N+JJ+1+2)
22		HR(N+JJ+2)=HR(N+JJ+1+2)
23		HL(N+JJ+2)=HL(N+JJ+1+2)
24	1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 -	OC(N+JJ)=OC(N+JJ+1)
25		$NL(N,JJ) \equiv NL(N,JJ+1)$
26		$NR(N+JJ) \equiv NR(N+JJ+1)$
27		FR(N+JJ) = FR(N+JJ+1)
28		FL(N+JJ) = FL(N+JJ+1)
29		SL(N,JJ) = SL(N,JJ+1)
30		$SR(N+JJ) \equiv SR(N+JJ+1)$
31		21 CONTINUE
32		22 NJJ=NJP
33		IF(J.LT.NJP) GO TO 20
34		23 CONTINUE
35		24 NJ(N)=NJJ
35		IF(XJ(N+NJJ+2)+GT+DIST+0R+XJ(N+NJJ+2)+LT+ACCUX) NJ(N)=NJ(N)+1
37		
38		IF(NJ(N).EQ.O) RETURN
39		DO 25 J=1,NJJ
40		K=XJ(N+J+2)/DX+1+99999
41		JI(N,K,2)=1
42		25 CONTINUE
43		RETURN
44		END

SUBROUTINE PARA 1 2 С COMPUTE VARIABLE C'S VALUES COMMON /B1/ E(40).C(40).Z(10).TIME.OPH.NN.N.N.CH.RSL.CURVE 3 4 COMMON/B6/AA1,BB1,CC1,SNK,IDG,SP1,XPG1,SP2,XPG2 5 COMMON/B13/STR COMMON/B16/AA A: BB3, CCC, TD, RTO, RMN, RAV 6 7 DIMENSION A1(80)+A2(80) DATA A1/" BETA", " ", " EPSIL ", "ON", " BETA", "L", " THETA", " O", 2*" ", 8 1° PHI Z' +' ',' DEL TA'+' ',' THETA'+' Z'+2*' '+' T O',' '+' L O'+ 9 2* *** V 0*** *** F 0*** *** RE 0*** *** H 0*** *** D 0*** *** R 0* 10 3+* *+* A 0*+* *** RAIN***0*** FR 0*+* *+* L CH*+* *+* L RS*+* *+ 11 4* K*** *** NU*** *** DAMDA*** *** RAIN*** *** I*** *** Q IN*** ** 5* Q L*** *** W*** *** HR/HM***IN*** R (FO***R MS)*** FT*** *** PE GRCE****NT*** FT*** **8***** IS IN *** */ 12 13 14 DATA A2/" BETA", " " TAN P" "SI" " BETA" "L', " SIN B". "4". 15 1" COS B'+"4"+" SIN B'+"6+E8"+" C R'+" ++" SIN B'+"8"+" COS B"+"8"+ 16 22** '+* L0/D0 ***/C5* *14** '** R0/43* ** 2DD/V0*** 1/FR0****2** 17 3° L CH*+**+* L RS*+**** K **+* *+* U **+* *+ DAMDA*+* **+ 18 4*RAIN****** I *** *** Q IN****** Q L **** *** H ***5** *** LS * 5*** *** THETA*** S **** KS **** **10** */ 19 20 GG(A+B+X)=SQRT(4.*A*A*X*X+4.*A*B*X+B*B+1.) 21 22 IF(ABS(AA1).LT.0.1E-20) GOTO 12 RSL=(2.*AA1*B(22)+BB1)/(4.*AA1)*GG(AA1,BB1,B(22))+1./(4.*SQRT(AA1* 23 24 \$AA1})*ALOG(8.*AA1*AA1*E(22)+4.*AA1*BB1+4.*SGRT(AA1*AA1)*GG(AA1.BB1 \$. 6(22))) -881/(4.*AA1)*66(AA1.881.8.)-1./(4.*SCRT(AA1*AA1))*AL 06(4. 25 \$*AA1*BE1+4.*SQRT(AA1*AA1)*GG(AA1.BE1.0.)} 26 27 GOT0 13 12 RSL=SQRT(BB1**2+1.)*B(22) 28 29 13 C(1)=B(1) 30 C(2)=SIN(ATAN(SIN(B(4))/SP2)) 31 C(3) = B(3)32 C(7)=1.5*B(26)/(60.*60.*B(7))*0.01*B(11)/B(12) C(10)=B(9)/B(11) 33 34 C(11)=B(11)/B(16)/C(5) 35 C(12)=B(5)/B(17) C(19)=B(19)/(43200.+B(12)) 36 37 C(20)=1./8(20)**2 C(21)=B(21)/B(11) 38 39 C(22)=B(22)/B(11) 40 C(23)=B(23)/B(17) C(25)=B(25)/B(12) 41 C(26)=B(26)/B(19) 42 C(27)=B(27)/B(19) 43 C(28)=B(28)/(E(12)*B(18)) 44 45 C(29)=B(29)*C(5)/(B(12)*E(16)) 46 C(30)=B(30)/B(12) 47 C(33)=B(33)/B(11)48 C(34)=ATAN(8(34)) 49 C(35)=B(35)/B(17) 50 C(36)=B(36) C(37) = B(37)51 52 C(40)=B(40)*C(5)/B(1E) THE FOLLOWING TWO STATEMENTS ARE SET TO CHANGE TD BY STR (DIMENSI-53 С 54 С CNLESS TIME FOR RAIN TO STOP). 55 STR=5. IF(TD+60.+B(12)/B(11).GT.STR) TD=STR+B(11)/B(12)/60. 56

57	WRITE(6,200)
58	200 FORMAT(/* TABLE OF INPUT DATA AND DIMENSION FSS PARAMETERS:*
59	\$//5X, *I *, 11X, *B(I) *, 20X, *C(I) */)
60	DO 10 I=1.40
61	IIII=2*I
62	III=IIII-1
63	WRITE(6,201)I,B(I),A1(III),A1(III),C(I),A2(III),A2(I TTT)
54	201 FORMAT(15+2X+2(F11+4+1X+2A6))
65	IF(1/5*5.EQ.I) WRITE(6,202)
56	202 FORMAT(1X)
57	10 CONTINUE
58	WRITE(6+203) RSL
59	203 FORMAT(/* RSL = *+F6+2+* FT*)
70	RETURN
71	END

1		SUBROUTINE PREP	
2	С	SET UP THE VALUES OF THOSE PARAMETERS WHICH CHANGE WITH SECT	ION N
3		COMMON /B1/ B(40) C(40) Z(10) TIME + OPH + NN + N + N CH + R SL + CURVE	
8Į		COMMON /B2/ H(27,27,2),V(27,27,2),HL(27,10,2),HR(27,10,2),	
5		\$VR (27, 10, 2), VL (27, 10, 2), VJ (27, 10, 2), XJ (27, 10, 2), JI (27, 27, 2),	KN,NJJ
6		COMMON /B3/ NK(27) +NJ(27)+DX+DT+DIST+HMIN+VMIN+ITYPE+I0+OC(2	7,101,
7		\$\$,D\$	
8		COMMON /B4/ II(27.2) xI(27.2) HI(27.2) VI(27.2) QI(27.2) WI(27:21.
9		\$CT (27.2) +CH(27.2) +CV(27.2)	
0		COMMON/B6/AA1,BB1,CC1,SNK,IDG,SP1,XPG1,SP2,XPG2	
1		COMMON /B10/ DXCH+DXRS+DDXCH+DDXRS	
2		DIMENSION STAR(1E)	
.3		DATA STAR/18** * * **/	
4		DATA 2(2)/0./	
.5		DATA IO/0/	
6		C(7)=1.5*8(26)/(60.*60.*8(7))*DT*8(11)/8(12)	
.7		IF(Z(2).GT.D.) QIN=B(28)	
.8		Z(2)=0.	
9		NJJ=NJ(N)	
20		IF(N-NCH)2,3,2	
21	С	FOR CHANNEL FLOW	
22	3	DX=DXCH	
23		B(28)=GIN	
24		C(28)=B(28)/(B(12) *B(18))	
25 . 		DIS(=C(21)	
(6) - 7			
	200	IP(IU-EU-I) WRITE(60/200) STAR	
20 00	. 200	DETURN	
20	r		
1	د ر	FOR OVERLAND FLOW	
(7	2		
17		DYP61-YP61/R(11)	
(u		DXP62=XP62/B(11)	
5		$\frac{1}{1} = \frac{1}{1} = \frac{1}$	·
36		IF(NN,FQ,1) DIST=C(2,2)+DXPG1+DXPG2	
37		DX=DXRS	
8		KN=DIST/DX+1.99999	
9		B(28)=0.	
Ū		C(28)=0.	
1		IF(10.EQ.1) WRITE(6, 201) STAR.N	
2 .	201	FORMAT(1846/" FOR OVERLAND FLOW, SECTION . 13)	
3		IF(I0.E0.0.0R.Z(1).LT.0.0001) RETURN	
4		DZ1=Z(1)*8(11)/8(12)	
5		WRITE(6+202)2(1)+D21	
6	202	FORMAT(/5X+76(*.*)/5X+*. AT TIME =*+F9+3+5X+*(DIMENSIONAL TI	ME = ?
17		\$F9.3, SEC.) RAINFALL STOPS .*/5X.76(*.*))	
8		Z(1)=-1.	
9		RETURN	
50 -		END	
1		SUBROUTINE RAIN(IR, TMCL)	
----------	-----	--	
2	С	COMPUTE RAINFALL INTENSITY	
3		COMMON /B1/ B(40),C(40),Z(10),TIME,CPH,N,N,NCH,RSL,CURVE	
4		COMMON/B15/AAA,BBB,CCC,TD,RTO,RMN,RAV	
5	С	INDEX IR=1, COMPUTE AVERAGE RAINFALL INTENSITY, RAV, IN./HR	
6	č	2. COMPUTE INSTANT RAINFALL INTENSITY, RINT, IN./HR	
7	ċ	3. COMPUTE TEMPORAL MEAN RAINFALL INTENSITY, RMN, IN./HR	
Å	č	USE THE RATE-DURATION-FREQUENCY FORMULA.	
ğ	č	PAV = AAA/(TD+BBB) + *CCC	
10	C C	PTO-SKEWNESS OF STORM PATTERN	
11	, Č	TOTTAE DURATION. MINUTES	
10	č		
17	C .	ARAY BODY COULTANTIC LENS TO CASE THAT BER TO LESS THAN 7FR0	
13	C	COLMOST DE LESS THAR ONTET IN ONSE THAT DED IS LESS THAN LENS	
14			
15	1		
16	100	FORMAT(SFID-D)	
17		WRITE(6,200) AAA, BBB,CCC, D,RTO	
18	200	FORMAT(/* RAINFALL PARAMETERS ARE A = **F8.20* B = **F8.20* C = *	
19		\$, F8.2, * TIME DURATION (1D) = $*, F8.2, *$ (MINUTES) RATIO (R) = $*, F8.3$	
20		\$)	
21		IF(BBB.LE.D.) GOTO 11	
22		RAV=AAA/(TD+BBB)**CCC	
23		B(26)=RAV	
24		RETURN	
25	11	B8B=-BBB	
26		IF(CCC.GE.1.) SSS=SQRT(-1.)	
27		RAV=AAA/(TD-BBB)**CCC	
28		IF(TD.LE.2.*BBB/(1CCC)) RAV=AAA/BBB**CCC*((1CCC)/(1.+CCC))**CC	
29		\$C	
30		B(26)=RAV	
31		RETURN	
32	2	2 TTT=TMDL *B(11)/B(12)/60.	
33		IF(TTT.LE.TD) GOTO 20	
34		RINT=0.	
35		B(32)=RINT	
36		RETURN	
37	20) IF(BBB.LE.O.) GOTO 21	
38		IF(RTO.LE.O.) RINT=AAA*((1CCC)*TTT+BBB)/(TTT +BBB)**(1.+CCC)	
39		IF(RT0.6E.1.) RINT=AAA*((1CCC)*(TD-TTT)+BBB)/((TD-TTT)+BBB)**(1.	
40		\$+000}	
41		IF (RTO.GT.U. AND.RTO.LT.1.AND.TTT.LE.RTO *TD) RINT=AAA*((1CCC)*	
42		\$(TD-TTT/RT0)+BBB)/((TD-TTT/RT0)+BBB)**(1.+CCC)	
43		TF (RTO, GT . 1) . AND . RTO . LT. 1 AND . TTT. GT. RTO +TD. AND. TTT. LE. TD) RINT=	
44		\$AAA+((1CCC)+(TTT-BT0+TD)/(1BT0)+BBB)/((TTT-BT0+TD)/(1BT0)+	
45		\$BBB) ** (1 -+ CCC)	
46		B(3)=RINT	
10			
41	21		
40 40	21	TELCC. 6F.1.1 SSST SAFI-1.1	
50			
50			
21			
52 E7			
55	22	2 11 11 1 1 1 2 4 4 00 0 / 1 4 - 0 0 0 / / KINI-AAA/ DDD ** 0 0 0 * 1 1 1 - 0 0 0 / 1 1 4 0 0 0 / 1 4 * 0 0 0 / 1 **	
54		BULL Triate of 2 addressing and the triat of the addressing areas attained and the second states	
55		IT TELEST & ZARBBS/(IA-CUU)ANDAIIIALEAIDE NINIAAART(IA-CUU)AIII-	
56		28881/(1+1-888)+*(1*+000)	

57	B(32)=RIN 7	
58	RETURN	
59	23 IF(TTT.LE.(TD-2.*8BB/(1CCC))) RINT=AAA*((1CCC)*(TD-TTT)-BBB)/(
60	\$(TD-TTT)-BBB)**(1.+CCC)	
61	IF(TTT.GT.(TD-2.*8BB/(1CCC)).AND.TTT.LE.TD) RINT=AAA/BBB**CCC*	
62	\$((1°-CCC)/(1°+CCC))**CCC	
63	8(32)=RINT	
64	RETURN	
65	24 IF(TTT+LE+(RTO+TD+2++88B+RTO/(1+-CCC))) RINT=AAA+((1+-CCC)+(TD+TT	
66	\$/RT0]-B8B)/((TD-TTT/RT0)-B8B)**(1.+CCC)	
67	IF(TTT.GT.(RT0*TD-2.*2BB*RT0/(1CCC)).AND.TTT.LE.(RT0*TD+2.*8BB*(
58	\$1RT0)/(1CCC))) RINT=AAA/BBB**CCC*((1CCC)/(1.+CCC))**CCC	
69	1F(1VT.GT.(RT0*ID+2.*BBB*(1RT0)/(1CCC)).AND.TTT.LE.TD) RINT=	
70	\$AAA*((1CCC)*(1)1-R(0*1D)/(1R(0)-BBB)/((1)-R(0*1D)/(1R(0)-	
11		
12		
13		
14	5 111-1MUL*0(11//01/2)/600 TETTT 17 TO 60TO 70	
76		
77	DETINM	
78	$\mathbf{A} = \mathbf{I} + $	
79		
80		
81	IF (RTO_GF +1 +) RMN=(AAA+TD/(TD+BBB)++CCC-AAA+(TD-TTT)/(TD-TTT+BBB)++	
82	\$600/111	
83	IF (RTG.GT.O.C.AND.RTG.LT.1.C.AND.TTT.LE.RTG.TD) RMN=(AAA*RTG*TD/(TD+	
84	\$BBB)**CCC-AAA*RTO*(TD-TTT/RTO)/(TD-TTT/RTO+BBB)**CCC)/TTT	
85	IF(RTO.GT.DAND.RTO.LT.1.AND.TTT.CT.RTO.TT.AD.AND.TTT.LE.TD) R MN=(
86	\$AAA*RTO*TD/(TD+BBB)**CCC+AAA*(TTT-RTO*TD)/((TTT-RTO*TD)/(1RTO)+	
87	\$BBD) **CCC)/TTT	
88	RETURN	
89	31 B8B=-8BB	
90	IF(CCC.GE.1.) SSS=SQRT(-1.)	
91	IF(RTO.LE.U.) GOTO 32	
92	IF(RT0.GE.1.) GOTO 33	
93	6010 34	
94	32 IF(TTT+LE+2+*BBB/(1+-CCC)) RMN=AAA/BBB**CCC*((1++CCC))**C	
95		
96	1+(1)1.61.2.*BBB/(1CUC).AND.111.LE.1D) KM N=AAA/(1)1-BBB)**CCC	
37		
30	SS IF (1) LE (1) Z SBBD (I) COUTT F	
100	TETTT = TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT	
100	$ = \frac{1}{1} + \frac$	
102		
102	ΛΕΙΟΛΝ 34 ΤΕΙΤΤΙΙΕ.(ΡΤΛΑΤΛ-2.«PRR«ΡΤΛ/(1CC))) Ρ.ΜυΞ(ΔΔΔ«ΡΤΛ«ΤΛ/(ΤΛ	
100		
105	$IF(TTT_{A} \in G \times (TT) \times TD \times TD \times TT_{A} = CC(T) \times AND \times TT_{A} = CT(T) \times TD \times TT_{A} = CT(T) = CT(T) \times TT_{A} = CT(T) = CT(T$	
106	$s_1 - RTO / (1 - CCC))$ RMN $= (AAA + RTO + TO / (TO - BR R) + CCC + AAA / RRR + CCC + (1 - CCC))$	
107	s = CC(1/(1 + CC(1)) + CC(+(11 + R(0 + T(1))/T))	
108	IF (III a GI $(RTO * TP + 2 * 2BB * (1 * -RTO)/(1 * -CCC)) = AND * TT * (F TD) RM N=$	
109	(AAA + RTO + TD/(TD - BBB) + CCC + AAA + (TT - RTO + TD)/((TTT - RTO + TD)/(1 - RTO) + CCC + AAA + (TTT - RTO + TD)/((TTT - RTO + TD)/(1 - RTO) + CCC + AAA + (TTT - RTO + TD)/((TTT - RTO + TD)/(1 - RTO) + CCC + AAA + (TTT - RTO + TD)/((TTT - RTO + TD)/(1 - RTO) + CCC + AAA + (TTT - RTO + TD)/((TTT - RTO + TD)/(1 - RTO) + CCC + AAA + (TTT - RTO + TD)/((TTT - RTO) + CCC) + AAA + (TTT - RTO + TD)/((TTT - RTO) + CCC) + AAA + (TTT - RTO + TD)/((TTT - RTO) + CCC) + AAA + (TTT - RTO) + CCC)	
110	\$B8B)**CC)/ITT	
111	RETURN	
112	35 RMN=0.	
113	RETURN	

114 END

• 51

1 SUBROUTINE REF 2 С COMPUTE THE REFERENCE PARAMETERS 3 COMMON /B1/ B(40).C(40).Z(10).TIME.OPH.NN.N.NCH.RSL.CURVE 4 COMMON/B6/AA1+BB1+CC1+SNK+IDC+SP1+XP61+SP2+XP62 COMMON /88/ ACCU+ACCUX+ACCUY+HDRY+CC 5 DIMENSION F(2), Y(2), PR(2) 6 7 С REFERENCE FLOW IS ASSUMED AS UNIFORM FLOW PER UNIT WIDTH AT THE EQUILIBRIUM STATE AT THE INLET Ĉ 8 9 B(11)=B(21) 10 N= 1 11 ACCU=0.1E-6 HDRY=0.1E-4 12 13 ACCUX=ACCU/B(11) 14 B(4)=ASIN(B(4)) 15 B(8)=B(4) 16 B(32)=B(26) 17 C(4)=SIN(B(4)) 18 C(5)=COS(B(4)) 19 C(6)=SIN(B(6)+B(8)) C(8)=SIN(B(8)) 20 21 C(9)=COS(B(8)) 22 SO=ABS(C(4)) 23 IF(C(4).GT.0.) GOTO 22 24 CC=0. 25 GOTO 23 26 22 CC=B(36) *C(4) **B(37) 27 23 IF(CC.LT.24.) CC=24. 28 AREA=B(21)*(B(22)+XPG1+X PG2+B(33)+B(9))*C(5) Q0=B(26) *AREA/(12.*ED.*6(+)+B(28) 29 30 B(19)=12.*60.*60./AREA*Q0 31 IF(B(23).LT.ACCU) GO TO 4 32 С WHEN ROUGHNESS SIZE K IS LARGER THAN ACCU. ASSUME TURBULENT FLOW 33 С ON ROUGH SURFACE 34 I=1 35 NCT=D 36 Y(1)=0.1 37 1 H0=Y(I) 38 CALL GEOM(2+A0+H0+R0+T0+D0+2+1+1) 39 F1=2 .* ALOG10(2.* R0/B(23))+1.74 40 F(I)=257.6*A0*A0*R0*S0*F1*F1-Q0*Q0 IF(ABS(F(I)).LT.ACCU) GO TO 3 41 42 IF(I.EQ.1) GO TO 2 43 NCT=NCT+1 44 IF(NCT.GT.20) SS=SQRT(-1.) 45 IF(ABS(F(1)-F(2)).LT.ACCU+ACCU) GO TO 3 46 H0=(F(1)+Y(2)-F(2)+Y(1))/(F(1)-F(2)) 47 Y(1)=Y(2) 48 Y(2)=H0 49 F(1)=F(2) 50 GO TO 1 51 2 1=2 Y(2)=0.5 52 53 GO TO 1 54 3 B(12)=Q0/A0 55 B(14)=B(12)*R0/B(24) 56 C CALCULATE THE CRITICAL RENOLDS NUMBER BETWEEN TURBULENT FLOW ON

57	С		SMOOTH SURFACE AND LAMINAR FLOW
58		4	REC=500.
59			NCT=0
60		5	F1=REC-CC*(ALOG10(REC)+ALOG10(CC)+C.404)**2
61			F2=12.+SQRT(CC)/(ALOG(10.)+SQRT(REC))
62			RECC=REC -F 1/F2
53			IF (ABS(RECC-REC) LI.ACCU) GU IO B
64 65			$N \cup [-N \cup [+1]]$
66			
67	·		60 TO 5
68		6	RELS=RECC
69		-	IF(B(23).LT.ACCU) GO TO 3
70	Ċ		CALCULATE THE CRITICAL REN OLDS NUMBER BETWEEN TURBULENT FLOW ON
71	C		ROUGH SURFACE AND LAMINAR FLOW
72			F1=2.*AL0G10(2.*R0/B(23))+1.74
73			RELR=CC*F1*F1
74			IF(RELS.GT.RELR) GO TO 7
75	С		RESRETHE CRITICAL REYNOLDS NO. BETWEEN TURBULENT FLOW ON SMOOTH
76	С		SURFACE AND THAT ON FOUGH SURFACE
77			RESR=9.312 *R0 *F1 /S (23)
18		7	TE(NE)R = B(14)1(8)80(3)
80		Ŕ	
81		0	
82	С		ASSUME TURBULENT FLOW ON SMOOTH SUPFACE
83	v	9	
84		-	NCT=0
85			RR(1)=(CC+Q0+Q0/(257.6+S0+RELS))++(1./3.)
86		10	RO=RR(I)
87			CALL GEOM(3, A0+HC+RC+TO+E0+2+1+1)
88			F1=SQRT(257.5*R0*S0)*A0/Q0
89			F(I)=2.+AL0G10(Q0+R0/(A0+8 (24))+F1)+0.404-1./F1
90			IF (ABS(F(I)).LT.ACCU) GO TO 12
91			IF(I.EG.1) GO TO 11
92			
33			1 = (1 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 +
34			$R_0 = \{r(1) * R_1(2) = r(2) * R_1(1) / (r(1) = r(2))$
96			
97			
98			
99 ·		11	I=2
100			RR(2)=R0+1.2
101			GO TO 10
102		1 Z	B(12)=Q0/A0
103			B(14)=B(12)*R0/B(24)
104			IF(B(14).LT.RELS) GO TO 15
105			B(13)=F1+F1
105	-		GO TO ZO
100	C		LUMPULE F AND R FUR LAMINAR FLUW, FTC/RE AND GT8+G+S+R+R+A/(C+NU)
100		12	кк (1) - (UU/ 8 • # 80 # 81 24)/ (3 2 • 2 # 50)) # # (1 •/ 3 •) T- 1
110			1-1 NCT-D
111		1 5	
112		10	CALL GEOMI 3 • AO • HO• RO • T O• FO • 2 • 1 • 1 1
113			F(T)=32-2+R0++2+S0+A0/(CC/8-+B(24))-R0

1

IF(ABS(F(I)).LT.ACCU) GO TO 18 IF(I.EQ.1) GO TO 17 NCT=NCT+1 IF(NCT.GT.20) SS=SQRT(-1.) R0=(F(1)*RR(2)-F(2)*RR(1))/(F(1)-F(2)) RR(1)=RR(2) RR(2)=RO F(1)=F(2) GO TO 16 17 I=2 RR(2)=R0+1.2 GO TO 16 18 B(12)=Q0/A0 B(14)=B(12)*R0/B(24) B(13)=CC/B(14) IF(RELS.LT.B(14)) SS=SQRT(-1.) 20 B(15)=H0 B(10)=TO B(16)=D0 B(17)=R0 B(18)=A0 B(20)=B(12)/SORT(32.2*B(16)*C(5)/B(1)) ACCUY=ACCU*C(5)/B(16) RETURN END

114

115

115

117

118

119

120

121

122 123 124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

;

1		SUBROUTINE SLOPE
2	С	COMPUTE RUNOFF DISCHARGE FROM SIDESLOPE
7	•	COMMON /B1/ B(4B)+C(4D)+Z(1D)+TIME+OPH+NN+N+NCH+RSL+CURVE
	¢.	COMMON /82/ H(27.27.2) V(27.27.2) HL(27.10.2) HR(27.10.2)
-		\$ yp (27, 10, 2), yl (27, 10, 2), yl (27, 10, 2), xJ (27, 10, 2), JI (27, 27, 2), KN + NJJ
· 3		ϕ (2) (1) (2) (1) (2) (1) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2
. 5		COMMON 7857 NR(27) ING(21 PADAO PADISI SI
1		\$ \$ \$ U \$
8		COMMON 7847 11(2/+2) +X1(2/+2)+H1(2/+2)+V1(2/+2)
9		\$CT(27,2),CH(27,2),CV(27,2)
10	, C	IFC=INDEX FOR COMPUTATION OF NEWLY OCCURRING SHOCK WAVES
11	С	1. ASSUME NO NEW SHOCK WAVES
12	C	2, OTHERWISE
13		IFC=1
14		CALL PREP
15		IF(KN+LT+2) RETURN
16		CALL INPT
17		CALL UBDY
18		CALL DBDY
19		IF(NJJ.GT.D) CALL PACKJ
20		IF(IFC.EQ.2) CALL NEWJ
21		CALL GEOM(2+AS+H(N+KN+2)+RS+TS+DS+1+2+DIST)
22		05=V(N+KN+2)+A5
22		
23		
27		
23		
25		
27		ENU

:

;

1 SUBROUTINE STORM(X,TTTT) 2 SET UP THE VALUES OF THOSE PARAMETERS WHICH CHANGE WITH THE С 3 C LONGITUDINAL COORDINATE 4 COMMON /B1/ B(40), C(40), Z(10), TIME, OPH, NN , N , N CH, R SL, CURVE 5 COMMON /B2/ H(27,27,2),V(27,27,2),HL(27,10,2),HR(27,10,2), \$VR(27,10,2),VL(27,10,2),VJ(27,10,2),XJ(27,10,2),JI(27,27,2),KN,NJJ б 7 COMMON /B3/ NK(27) +NJ(27) + DX + DIST + HH IN + V MIN + IT YPE + 10 + 0 C(27 + 10) + 8 \$5.DS 9 COMMON /B4/ II(27,2),XI(27,2),HI(27,2),VI(27,2),QI(27,2),WI(27,2), 10 \$CT(27,2), CH(27,2), CV(27,2) 11 COMMON/B6/AA1 .B B1.CC1.SNK.IDG.SP1.XPG1.SP2.XPG2 12 COMMON /B8/ ACCU+ACCUX+ACCUY+HDRY+CC 13 COMMON /BIO/ DXCH. DXRS. DDXCH. DDXRS 14 COMMON/B16/AAA+BBB+CCC+TD+RTC+RMN+RAV 15 COMMON/B17/FINF, BETTA, ALPHA, TO, TP, VSF, SPI 16 DATA IITYPE/0/ DATA Z(1)/0./ 17 18 GG(A+B+Y)=SQRT(4++A+A+Y+Y+4+A+B+Y+B+E+1.) FCTA=AREA MODIFICATION FACTOR DUE TO CURVED ROADWAY 19 С 20 C RADLS=DIMENSIONLESS RADIUS OF CURVATURE (RADIUS/B(11)) 21 IF(CURVE.GT.0.1E-5) RADLS=1./CURVE/B(11) 22 DXPG1=XPG1/6(11) 23 DXPG2=XPG2/8(11) 24 IF(CURVE.GT.D.1E-5) FCTA=1.+(C(22)+DXPG1+DXPG2-X)/RADLS 25 IF(IITYPE.EQ.D) IITYPE=ITYPE 26 IF(TTTT.GT.TD*60.*B(12)/B(11).AND.ABS(Z(1)).LT.B.0001) Z(1)=TD*6 G. 27 \$*9(12)/B(11) 28 K=X/DX+1.99999 29 XRAIN=C(30)*TTTT 30 IF(N-NCH) 2.10:13 31 2 C(24)=D. 32 B(29)=0. 33 IF(X.GT.C(22)) GOTO 4 34 XL=X*B(11) 35 IF(ABS(AA1).LT.0.1E-20) COTO 1 36 SAT0=BB1/(4.*AA1)*SQRT(9B1*BB1+1.)+1./(4.*SQRT(AA1*AA1))*AL 06 (4.*A 37 \$A1*BB1+4.*SQRT(AA1*AA1)*SQRT(BB1*BB1+1.)) 38 RSX=(2.*AA1*XL+8B1)/(4.*AA1)*GG(AA1*BB1*XL)+1./(4.*SQRT(AA1*AA1))* \$ALOG(8.*AA1*AA1*XL+4.*AA1*BB1+4.*SQRT(AA1*AA1)*GG(AA1.BB1.XL))-SAT 33 40 \$0 41 GOTO 9 42 1 RSX=SQRT(BB1**2+1.)*XL 43 9 S=RSX/B(11) 44 3 TAN=-(2.*AA1*XL+B31) 45 B(8)=ATAN(TAN) DS=DX/COS(B(8)) 46 47 GOTO 5 48 4 IF(INT(XPG1).EQ.0) GOTO 7 49 IF(X.LE.(C(22)+DXPG1)) GOTO 5 50 7 8(8)=ASTN(SP2) 51 S=RSL/B(11)+(X-C(22))/COS(B(8))52 DS=DX/COS(B(8)) 53 GOTO 5 54 6 B(8)=ASIN(SP1) 55 S=RSL/B(11)+(X-C(22))/COS(B(8)) 56 DS=DX/COS(B(8))

57 5 IF(IITYPE.NE.6) GOTO 8 58 PRAIN=C(22)+DXPG1+DXPG2-XRAIN 59 KPR=PRAIN/DX+1.93999 60 IF(KPR.GE.2) H(N.KPR-1.1)=HMIN 61 IF(PRAIN.GT.DX) H(N.1.2)=HDRY 62 IF(X-PRAIN) 15+15+16 63 8 IF(ITYPE.NE.3) GO TO 16 64 IF(XRAIN-X) 15,15,16 65 10 B(8)=B(4) 66 DX1=FLOAT(K-1)+DX-X 67 IF(ITYPE.EQ.5) GO TO 14 68 IF(ITYPE.NE.2) GO TO 12 69 IF(XRAIN.GT.X) GO TO 11 70 C(24)=0. 71 B(29)=D. 72 GOTO 15 11 KRAIN=XRAIN/DX+1.99999 74 IF(KRAIN.NE.K) GO TO 12 75 IF(K.GE.2) GOTO 41 B(29)=0. C(24)=D. COTO 16 41 DX2=XRAIN-X DX3=XRAIN-FLOAT(K-2)+DX B(29)=QI(K-1+1)*DX2/DX3*B(18)*B(12) C(24)=VI(K-1+1)*DX2/DX3 GOTO 16 12 IF(K.GE.2) GOTO 31 B(29)=QI(K+1)+B(18)+B(12) C(24)=VI(K+1) GOTO 32 31 B(29)=(QI(K+1)-(QI(K+1)-QI(K-1+1))*DX1/DX)*B(18)*B(12) C(24)=VI(K,1)-(VI(K,1)-VI(K-1,1))*DX1/DX 32 IF(IITYPE.EQ. 3. AND.XRAIN.GT.(C(22)+DXPG1+DXPG2)) GOTO 16 IF(IITYPE.EQ. 3. AND. XRAIN.LT. (C(22)+DXPG1+DXPG2)) GOTO 15 IF(ITYPE.EG.1) GO TO 16 WT=CT(K+1) IF(K.GE.2) WT=CT(K,1)-DX1/DX*(CT(K,1)-CT(K-1,1)) IF(XRAIN+WT) 15,15,16 14 PRAIN=C(21)-XRAIN KPR=PRAIN/DX+1.99399 IF(KPR.GE.2) H(N+KPR-1+1)=HMIN IF(PRAIN.GT.DX) H(N.1.2)=HDRY IF(PRAIN.LT.X) GO TO 21 C(24)=0. 8(29)=0. GOTO 15 21 IF(KPR.NE.K) GOTO 22 IF(K.GE.2) GOTO 51 B(29)=0. C(24)=D. COTO 23 51 DX2=X-PRAIN DX3=FLOAT(K-1)+DX-PRAIN B(29)=QI(K+1)+DX2/DX3+B(18)+B(12) C(24)=VI(K+1)+DX2/DX3 GOTO 23

;

•

73

76

77

78

79

80

81

82

83

84

85

86

87

88 89

90 91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

103

109

110

111

112

113

	22	IF(K.CE.2) SOTO 51
		B(29)=QI(K+1)*B(18)*B(12)
		C(24)=VI(K,1)
*		GOTO 23
	61	B(29)=(QI(K,1)-(QI(K,1)-QI(K-1,1))*DX1/DX)*B(18)*B(12)
		C(24)=VI(K',1)+(VI(K,1)-VI(K-1,1))+DX1/DX
	23	IF(X-PRAIN) 15,15,16
	15	B(26)=D.
		GO TO 17
	13	C(24)=0.
		B(29)=0.
	16	B(26)=B(32)
		IF(ITYPE.EQ.1) CALL RAIN(2.TTTT)
•	17	C(26)=B(26)/B(19)
		C(23)=B(23)/B(17)
		$IF(N \cdot EQ \cdot NCH) C(23) = C(12)$
		$IF(N \cdot GT \cdot NCH) C(23) = C(35)$
		B(27)=0.
		IF(N.EQ.NCH.AND.B(5).GE.U.3) CALL INFLT(2.TTTT)
		IF(N. GT. NCH. AND. B(35). GE. D. 3) CALL INFLT(2, TTTT)
		C(27)=B(27)/B(19)
		IF(N.NE.NCH) B(29)=0.
		C(29)=B(29)/(3(18)*B(12))
		IF(N.GT.NCH) B(8)=C(34)
		C(6) = SIN(B(6) + B(8))
		C(8)=SIN(B(8))
		C(9)=COS(B(8))
		C(2) = SIN(ATAN(SIN(B(4))/C(8)))
		C(36)=B(36)
		C(37)=B(37)
		IF(N.EQ.NCH.AND.B(5).GE.D.3) C(36)=B(38)
		IF(N.EQ.NCH.AND.B(5).GE.0.3) C(37)=B(39)
		IF(N.GT.NCH.AND.B(35).GE.(1.3) C(36)=B(38)
		IF(N.GT.NCH.AND.B(35).GE.(1.3) C(37)=B(39)
		IF(CURVE.GT.O.1E-5.AND.N.NE.NCH) C(26)=FCTA*C(26)
		IF(CURVE.GT.B.1E-5.AND.N.NE.NCH) C(27)=FCTA+C(27)
		RETURN
		END

244

ŝ

1		SUBROUTINE TYPE4	
2	С	SET UP THE GUTTER FLOW CONDITIONS FOR TYPE 3 MOVING RAINSTORM	
3	Ċ	THE ADVANCING WAVEFRONT REACHES THE ROAD CURB	
4		COMMON /B1/ B(40)+C(40)+Z(10)+TIME+OPH+NN+N+NCH+RSL+CURVE	
5		COMMON /B2/ H(27+27+2)+V(27+27+2)+H(27+10+2)+HR(27+10+2)+	
6		\$ VR (27, 10, 2), VL (27, 10, 2), VJ (27, 10, 2), XJ (27, 10, 2), JT (27, 27, 2), KN, N.	1.1
7		COMMON /B3/ NK(27) -NJ(27)-DY-DT-DTST-HMTN-VMTN-TYPE-TO-OC(27-10)	
Å		\$5.05	Ø
q		COMMON / R4/ TT127.21.4T(27.2).4T(27.2).4T(27.2).0T(27.2).4T(27.2)	
10	•	CT127-21-CH127-21-CH127-21	9
11			
17			
17			
13			
15			
10			
10			
10		CALL STORM(U.+ FIME)	
10			
7.3			
20			
21			
22			
23		SZ CALL FRIC(VV(1), HP +P +P +P +REC, IR +Z +U +)	
24		FF(1)-((8)-((4)*F/S(1))*AS(VV(1))*VV(1)/R	
20	•	TELES (1) (0) TO TO TO TO TO TO TO TO	
20			
29		TELNETT AT 201 EFFECT 1 1	
20			
23		VVV-(FF(1)+VV(2)-FF(2)+V(1))/(FF(1)-FF(2))	
30			
77			
32			
23			
75			
35			
20			
31			
20			
33		$\lambda_1(1) + j = \lambda_1(1) + 2j$	
40			
41			
42		$H(N \neq K \neq 2) = H(1 \neq K \neq 2)$	
43		V(N + K + 2) = V(1 + K + 2)	
44			
40		- CONTINUE	
46			
47		H1(N,2)=H1(1,2)	
48		VI(N,2) = VI(1,2)	
49		11(N,2)=11(1,2)	
50		C1(N+2)=C1(1+2)	
51			
52		CY(N,2)=CV(1,2)	
53		W1(N+2) = W1(1+2)	
54		XI(N+2)=XI(1+2)	
55		QI(N+2)=QI(1+2)	
56		XI(N+1)=XI(1+1)	

57	•	H(NCHONOZ) =H(NCHolo2)
58		V(NCH+N+2)=V(NCH+1+2)
59		IF(NJJ.E0.0) 60 TO 10
60	· • •	NJ(N)=NJJ
61		DO 8 J=1.NJJ
62		XJ(N,J,2)=XJ(1,J,2)
63		$VJ(N_{1}) = VJ(1_{1}) = VJ(1_{1})$
64		VR(N,J,2)=VR(1,J,2)
65		VL(N,J,2)=VL(1,J,2)
66		HL(N+J+2)=HL(1+J+2)
67	•	HR (N, J, 2)=HR(1, J, 2)
68	8	CONTINUE
69	10	CONTINUE
70		RETURN
71		FND

•

SUBROUTINE UBOY С SET UP UPSTREAM BOUNDARY CONDITIONS COMMON /B1/ B(40) + C(40) + 7(10) + TIME + OPH + NN + N + NCH + RSL + CURVE COMMON /B2/ H(27,27,2),V(27,27,2),HL(27,10,2),HR(27,10,2), \$VR (27, 10, 2), VL (27, 10, 2), VJ (27, 10, 2), XJ (27, 10, 2), JI (27, 27, 2), KN, NJ COMMON /B3/ NK(27) +NJ(27) +DX +DT +DIST +HMIN +VMIN + IT YPE + IO +OC(27 +10) + \$5,DS COMMON /B8/ ACCU; ACCUX; ACCUY; HDRY; CC COMMON /B14/ INET(27) IF(ITYPE.EQ.2.AND.IWET(N).EQ.0) H(N.1.2)=HDRY IF(ITYPE.EQ.5.AND.IWET(N).EQ.D) H(N.1.2)=HDRY CALL STORM(D., TIME) IF(B(26).LT.ACCU.AND.H(N +1+1).LT.1.1+HDRY) H(N+1+2)=HDRY IF(H(N+1+2).GT.ACCUY) RETURN XJ2=XJ(N+1+2). IF (XJ2.GT.D.. AND.XJ2.LT.DX) JI(N.2.2)=1 IF(JI(N+2+1)+EQ-1) GOTO 20 IF(JI(N.2.2).EQ.1) GOTO 10 IF(ITYPE.EQ.2) GO TO 5 IF(N.EQ.1.OR.N.EQ.NCH) GO TO 5 N1=N-1 IF(ABS(H(N+1+1)-H(N1+1+1)).GT.ACCU) GO TO 5 IF(ABS(V(N+1+1)-V(N1+1+1)).GT.ACCU) GO TO 5 IF(ABS(V(N+2+1)-V(N1+2+1)).GT.ACCU) GO TO 5 IF(ABS(H(N+2+1)-H(N1+2+1)).GT.ACCU) GO TO 5 IF(ABS(H(N+2+2)-H(N1+2+2)).GT.ACCU) GO TO 5 IF(ABS(V(N+2+2)-V(N1+2+2)).GT.ACCU) GO TO 5 H(N+1+2)=H(N1+1+2) V(N+1+2)=V(N1+1+2) RETURN 5 CALL UPT (H(N+1+1)+V(N+1+1)+H(N+2+1)+V(N+2+1)+H(N+2+2)+V(N+2+2)+ \$DX] RETURN 10 IF(XJ2.LT.ACCUX) GO TO 12 H2=H(N+1+1)+(H(N+2+1)-H(N+1+1))*XJ2/DX V2=V(N+1+1)+(V(N+2+1)-V(N+1+1))+XJ2/DX 11 CALL UPT(H(N+1+1)+V(N+1+1)+H2+V2+HL(N+1+2)+VL(N+1+2)+XJ2) RETURN 12 H(N+1+2)=HL(N+1+2) V(N+1+2)=VL(N+1+2) RETURN 20 IF(JI(N.2.2).EQ.0) GOTO 22 IF(XJ(N+1+1).LT.ACCUX) GO TO 21 H2=H(N+1+1)+(HL(N+1+1)-H(N+1+1))+XJ2/XJ(N+1+1) V2=V(N+1+1)+(VL(N+1+1)-V(N+1+1))+XJ2/XJ(N+1+1) GO TO 11 21 CALL UPT(HL(N+1+1)+VL(N+1+1)+0+0++HL(N+1+2)+VL(N+1+2)+XJ2) RETURN 22 IF(VJ(N+1+1).LT.0-) GO TO 23 H2=H(N+1+1)+(HL(N+1+1)-H(N+1+1))+DX/XJ(N+1+1) V2=V(N+1+1)+(VL(N+1+1)-V(N+1+1))*DX/XJ(N+1+1) CALL UPT(H(N+1+1)+V(N+1+1)+H2+V2+H(N+2+2)+V(N+2+2)+DX) RETURN 23 H1=H(N+2+1)+(HR(N+1+1)-H(N+2+1))+DX/(DX-XJ(N+1+1)) V1=V(N+2+1)+(VR(N+1+1)-V(N+2+1))*DX/(DX-XJ(N+1+1)) CALL UPT (H1+V1+H(N+2+1)+V(N+2+1)+H(N+2+2)+V(N+2+2)+DX)

1 2

3

4

5

6

7

8

9 10

11 12

13

14 15

16

17

18

20

22

24

25

26

27

28

29

30

31

32

33

34 35

36

38

39

40

41

42

43

44 45

46

47 48

49

50

51 52

53

54 55

56

57		RETURN	
58		END	

SUBROUTINE UPT(H1, V1, H2, V2, H3, V3, X) С COMPUTE V AND H AT THE UPSTREAM GRID POINT COMMON /81/ B(40),C(40),Z(10),TIME+OPH+NN+N+NCH+RSL+CURVE COMMON /B2/ H(27+27+2)+V(27+27+2)+HL(27+10+2)+HR(27+10+2)+ \$VR(27,10,2)+VL(27,10,2)+VJ(27,10,2),XJ(27,10,2)+JI(27,27,2)+KN+NJJ COMMON /B3/ NK(27) +NJ(27) +DX +DT +DIST +HMIN +VMIN + IT YPE +IO +OC(27,10) + \$S+D5 COMMON /B4/ II(27,2)+XI(27,2)+HI(27,2)+VI(27,2)+VI(27,2)+VI(27,2)+ \$CT (27+2) + CH(27+2) + CV (27+2) COMMON/B6/AA1, BB1, CC1, SNK, IDG, SP1, XPG1, SP2, XPG2 COMMON /B8/ ACCU; ACCUX , ACCUY , HDRY, CC DATA C22/0./ IF(IDG.EQ.1.AND.N.EQ.NCH) CTMIN=HMIN*B(16)/C(5)/TAN(ASIN(SP2))/B(1 \$**П**) IF (IDG.EQ.1.AND.N.EQ.NCH.AND.CT(1.2).LT.CTMIN) CT(1.2)=CTMIN IF(N.EQ.NCH) CALL GEOM(2 +AMIN+HMIN+R+T+D+1+2+D+) CALL GEOM(2+ADRY+HDRY+R+T+D+1+2+0+) TIM=TIME-DT CALL STORM(0. . TIM) CALL GEOM(2+A1+H1+R1+T1+D1+1+1+0+) C1=C(28) IF(N.EQ.NCH) C1=C22 C9=C(9)C26=C(26) C27=C(27) C29=C(29) CALL STORM(D. . TIME) C2=C(28) C9=C(9)+C9 C26=C(26)+C26 C27=C(27)+C27 C29=C(29)+C29 CALL STORM(X.TIME) CALL GEOM(2+A3+H3+R3+T3+D3+1+2+X) C9=C(9)+C9 C26=C(26)+C26 C27=C(27)+C27 C29=C(29)+C29 CALL STORM(X.TIM) CALL GEOM(2+A2+H2+R2+T2+D2+1+1+X) C9=(C(9)+C3)/4. C26=(C(26)+C26)/4. C27=(C(27)+C27)/4. C29=(C(29)+C29)/4. T=(T1+T2+T3)/3. A=A1+A2-A3+2.*DT*((C9*(C26-C27)*C(19)*T*B(11)*B(10)/B(18))+B(11) \$ * C29/(B(10) * C (5))) - (V2 * A 2+ V3 * A 3- C1 - C 2) * (D T/X) IF (N.EQ.NCH.AND.IDG.EQ.1.AND.A.LT.AMIN) A = A MIN TE(A.LT.ADRY) A=ADRY CALL GEOM(1+A+H(N+1+2)+R+T+D+1+2+D+) IF (N.EQ.NCH.AND.IDG.EQ.1.AND.H(N.1.2).LT.HMIN) H(N.1.2)=HMIN IF(H(N+1+2)+LT+HDRY) H(N+1+2)=HDRY IF (N.EQ.NCH.AND.NK(1).GT.2) CALL INBDY (3,0.,H(N.1.2).T.2) CALL GEOM(2+A+H(N+1+2)+R+T+D+1+2+0+) 55 V(N,1+2)=C2/A IF(N.EQ.NCH) C22=C2

1 2

3

4 5

6

7

8

9

10 11

12

13

14

15

16

17

18

19

20 21

22 23

24

25

26

27

28

29

30

31

32

33 34

35

36 37

38

39

40 41

42

43 44

45

46 47

48 49

50

51

52 53

54

56

:

1		SUBROUTINE WRITJ
2	С	OUTPUT INFORMATION FOR DISCONTINUITIES
3		COMMON /B1/ B(40)+C(40)+Z(10)+TIME+OPH+NN+N+NCH+RSL+CURVE
4	•	COMMON /B2/ H(27,27,2),V(27,27,2),HL(27,10,2),HR(27,10,2),
5		\$VR(27+10+2)+VL(27+10+2)+VJ(27+10+2)+XJ(27+10+2)+JI(27+27+2)+KN+N_j
6		COMMON /B3/ NK(27)+NJ(27)+DX+DT+DIST+HMIN+VMIN+ITYPE+I0+OC(27+10)+
7		\$\$•D\$
8		COMMON /B7/ NL(27,10), NR(27,10), SL(27,10), SR(27,10), FL(27,10),
9		\$FR(27+10)+NFJ+SFJ+FFJ
10		WRITE(6,200)
11		280 FORMAT(/* DISCONTINUITIES:*/4X**TYPE*+5X+*XJ*+4X+*VJ*+13X+*V*+6X+
12		1°H°+6X+°Q°+6X+°FR'+5X+°REL FR'+4X+°RENOS°+4X+°CRI RE'+3X+°FRIC'+
13		26X * * SF * • 5X * * F * • 2X • * E * • 4X • * 0CC ~ * 1
14		DO 30 J=1+NJJ
15		(2+ E+ N) [X=[L]X
16		VJJ=VJ(N+J+2)
17		VLL=VL(N,J,2)
18		VRR=VR(N+J+2)
19		HRR=HR(N+J+2)
20		HLL=HL(N,J,2)
21		CALL STORM(XJJ+TIME)
22		CALL OPHEAD
23		CALL GEOM(2+ALL+HLL+PLL+TLL+DLL+1+2+XJJ)
24		CALL GEOM(2+ARR+HRR+RRR+TRR+DRR+1+2+XJJ)
25		
26		QR=VRR+ARR
27		CALL FRIC(VLL+HLL+FLL+RLL+RCL+RCL+KL+2+XJJ)
28		CALL FRIC(VRR+HRR+FRR+RRR+RER+RCR+KR+2+XJJ)
29	•	FR1=FRTST((VLL-VJJ)+DLL+(PH+C(1)+C(5)+C(9)+C(20)+2)
30		FR2=FRTST((VRR-VJJ)+DRR+OPH+C(1)+C(5)+C(9)+C(20)+2)
31	•	F1=FRTST(VLL+DLL+OPH+C(1)+C(5)+C(9)+C(20)+2)
32		F2=FRTST(VRR, DRR, 0PH, C(1), C(5), C(9), C(20), 2)
33		IF(ARR.LT.ALL) GO TO 2D
34		WRITE(6,201)XJJ,VJJ,VLL+HLL+GL+FR1+RR1+RCL+RCL+FL(N+J)+SL(N+J)+KL
35		\$ +NL(N+J) +OC(N+J) +VRR +HRR +QR +F2 +FR2 +FER +RCR+FR(N+J) +SR(N+J) +KR+
36		\$NR(N,J)
37		201 FORMAT (/4X+*JUMP *+2F7+4+* LEFT *+3F7+4+2E9+4+4E9+3+2I3+4X+A6/
38		\$25X+ *RIGHT * 3F7 . 4 . 2E9 . 4 . 4E9 . 3 . 2I3)
39		CO TO 30
40		20 FR1=FRTST((VJJ-VLL)+DLL+OPH+C(1)+C(5)+C(9)+C(20)+2)
41		FR2=FRTST((VJJ-VRR), DRR, CPH, C(1), C(5), C(9), C(20), 2)
42		WRITE(5,202)XJJ,VJJ,VLL,HLL,QL,F1,FR1,REL,RCL,FL(N,J),SL(N,J),KL
43	•	\$+NL(N+J)+OC(N+J)+VRR+HRR+GR+F2+FR2+RER+RCR+FR(N+J)+SR(N+J)+KR+
44		\$NR(N,J)
45		202 FORMAT(/4X, *SURGE*, 2F7, 4', LEFT *, 3F7, 4, 2E9, 4, 4E9, 3, 2T3, 4X, A6/
46		\$25X, *RIGHT * 3F7.4 + 2F9.4 + 4F9.3 + 2I3)
47		30 CONTINUE
48		RETURN
49		FND

2

.

.

.

ť

7. Test Data

7.1. Test input

Input data for run 1 on the roadway with curb-type gutter are:

Card No. 1	ITYPE 1	NOUT 5	NN 5	TEND 10.0	DDXCH 100.0	DDXRS 4.0	CURVE 0.0	
2	B(1) 1.0	B(2) 1.0	B(3) 1.0	B(4) 0.05	B(5) 0.0034	B(6) 0.0	B(7) 0.1575	B(8) -*
3	B(9)	B(10) -	B(11) 400.0	B(12)	B(13)	B(14)	B(15)	B(16)
4	B(17) -	B(18) _	B(19)	B(20) [°]	B(21) 400.0	B(22) 24.0	B(23) 0.0034	B(24) 0.0000121
5	B(25) 28.5	B(26)	B(27)	B(28) -	B(29)	B(30)	B(31)	B(32)
6	B(33)	B(34) -	B(35) 0.333	B(36) 235.0	B(37) 0.296	B(38) 510000.0	B(39) 0.662	B(40) 0.0
7	NL 2	IDG 1	Y(1) 0.0	Y(2) -0.250	Y(3) -0.625	SUPEL	TRFCT -	SPEED
8	SP1 0.0	XPG1 0.0	SP2 0.10	XPG2 3.0				
9	AAA 20.0	BBB **	CCC 0.0	TD -	RTO -			
10	FINF -	BETTA	ALPHA -	TO	SPI -			

11 Punch any digit but 0 on column 3

*blank
**any digit but 0

7.2. <u>Test output</u>

A sample of output data is shown on the following page.

RAINFALL INTENSITY = 20.00 (IN./HR) INFILTRAION RATE = .000 (IN./HR) CRITICAL SECTION LOCATES AT X= .0299

х	v	н	Q	FROUDE	RFYNOLDS	CRI RE	F	FRIC	SLOPE F	E	V(FPS)	H(FT)	Q(CFS)
•000	• 00 66	.0107	.000	•0.00.0	.686-19	• 0 O U	0	´ 		-,	• 00 0	.386-02	.000
.010	.0197	.0196	<u>-</u> 386-03	•2633	16 U+03	• 646 +03	4	•454+00	•184-01	U	• 272 +00	.708-02	₀193-02
.020	.0363	.0236	•726-03	.8103	•3U2+03	•755+03	4	•253+00	•208-01	C	+425+00	.853-02	.362-02
.030	.0397	.0257	■102-02	1.0023	• 42 4 +03	825+03	4	•188+00	.238-01	1	• 548 +0 0	•929-02	.509-02
•04U	.0506	.0265	.1 34-02	1.2574	•559+03	•871+U3	4	•148+00	•293-01	0	•699+80	•960-02	•670-02 _.
.050	. 058U	.0274	.159-02	1.4178	.E61+03	•916+03	4	•130+00	•325-01	1	•800+00	.991-02	•793-02

 THE CONDITIONS ON INTER BOUNDARY ARE:

 N
 X
 H
 V
 Q
 FR
 L
 FR
 CNJ
 H
 XJDOT
 T

 1
 .0623
 .0268
 .0175
 .202-02
 .187+01
 - - - 2.0876

-								
2	.0802	.0292	•U 65 5	.135-02	.158+01	 -	 -	2.9324
3	.0587	.0281	•Ü644	.191-02	155+01	 	 	* 3.5123
4	.0582	.0281	•U64 D	.130-02	155+01	 	 	3.7099
5	•U58U	.0281	•U639	.179-02	154+01	 	 	3.7801

RAINFALL INTENSITY = 20.00 (IN./HR) INFILTRAION RATE = .000 (IN./HR) CRITICAL SECTION LOCATES AT X= .0024

. .

Q(CFS) х v н Q FROUDE REYNOLDS CRI RE F FRIC SLOPE F E V(FPS) H(FT) - .000 .873-D1 .COC .2412 .00U .0000 .968-19 .000 .0 ------+000 .0000 .190+00 2.6354 .258+05 .244+04 5 .397-01 .362-01 0 .417+01 .131+00 .950+00 .250 .3019 .3527 .4127 .253+00 2.6045 .272+05 .245+04 5 .392+01 .367-01 0 .471+01 .149+00 .129+01 .31.24 •504 ₀75U .3180 .4297 .286+00 2.6127 .287+05 .249+04 5 .386-01 .361-01 0 .439+01 .156+00 .143+01 .3215 .4357 .298+00 2.6275 .293+05 .250+04 5 .385-D1 .362-D1 0 .444+01 .158+00 .149+01 1.000

ACC COMP ERR = -2.091, CURR COMP ERR = -.461, WITH VO = .113 VT = 1.302 VIN = 1.331 VOUT = .112

GPO

910-457

. . .

. .