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PREFACE

The work described in this report was performed under contract
DOT-FH=11~7806, entitled ¢‘Urban Storm Runoff Inlet Hydrograph Study®’
between the Federal Highway Administration and Utah State University.
This research contract aimed at the development of an accurate design
method for computing inlet hydrographs of surface. runoff under intense
rainstorms on urban highways. One of the major tasks in this research
project was the development of the most accurate mathematical model for
computing the runoff inlet hydrograph. All flood routing methods were
extensively reviewed and the most efficient and accurate technique was
adopted for the formulation of a computer model including all the rainfall-
runoff processes on a highway watershed. Accuracy of the computer model
was then checked by comparing the computed inlet hydrographs with field
data obtained in the field phase of the research. The work reported
herein is part of the analytical phase of the project.

The research was conducted under the general direction and super-
vision of Dr. Cheng~lung Chen, Professor of Civil and Environmental
Engineering at Utah State University. During this study, Min-shoung Chu,
Graduate Research Assistant, and Dr. George C. Shih, Research Engineer,
at the Utah Water Research Laboratory, helped formulate the surface runoff
computer model. The original computer program was written by Mr. Chu as
part of his dissertation entitled ¢‘Hydrodynamics of Runoff from Road
Surfaces under Moving Rainstorms,’?’ submitted in 1973 in partial fulfill-
ment of the requirements for the degree of Doctor of Philosophy in Civil
and Environmental Engineering, Utah State University, Logan, Utah. Sub-
sequent modifications were made by Dr. Shih and mainly by the author in
an attempt to correct inaccuracies found in the original program. The
computer program was greatly expanded by the author to include the com-
putation of the inlet hydrographs resulting from heavy storms under var-
ious drainage conditions in highway watersheds. Gratitude is due Dr.
Shih for his assistance in the formulation of the drainage-area correc~
tion factor (Eq. 67) used in the computation of surface runoff on the
curved roadway. ‘

The contract was monitored by Dr. D. C. Woo, Contract Manager,
Environmental Design and Control Division, Federal Highway Administra-
tion. The author is indebted to him for his idea to initiate this study
and overall research plan, detailed discussions of research conduct of
all phases, and critical reviews and comments of the results during the
course of the work.
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INTRODUCTION

Because of the difficulty in accurately predicting the inflow at
the highway drainage inlet under a given design rainstorm pattern, urban
storm drainage systems today are scill largely designed on the basis of
the empirical rational formulsz using rainfall intensity modified by a
coefficient of runoff. Despite the efficiency in the engineering
application of the rational method to the urban highway hydrologic
design, the method permits only the calculation of peak discharge for a
uniform rainfall of chosen intensity. Furthermore, the determination of
values of the coefficient in the rational formula is very difficult
because this coefficient must vepresent many variables including hydro-
meteorological and physiographical factors of an urban highway watershed
under iunvestigation. Therefore, a more accurate method based on a
physically sound concept is needed.

Many attempts have been made by previous investigators to improve
the rational method. For instance, Gregory and Arnold (1932) developed
a modification of the rational formula to recognize such factors as
watershed shape and slope, stream pattern, and the elements of channel
flow. Bernard (1938) developed similar modifications more clearly repre=
senting the many variables of runoff, with charts and nomographs to
facilitate use of the more complex formulas. Application of these
modifications, however, genmerally has been limited to areas larger than
those encountered in most urban highway drainage projects.

Development of Urban Runoff Models

Among the fivst to consider applying hydrograph techniques to the
design of storm sewers were Horner and Flynt (1936), who measured the
temporal variation in rainfall and runoff on three very small (less than
5 acres) heavily urbanized areas in St. Louis, Mo., and Horner and Jens
(1942) , who applied modern hydrologic concepts to the determination of
runcff from a single city residential block and suggested application of
their techniques to larger areas. ~Hicks (1944) was the first to suggest
the possibility of synthesizing urban runoff hydrographs. He developed
a method of computing urban runoffs for the Los Angeles area based on
experimental work for the determination of the principal abstractions
from rainfall and actual gagings of local drainage areas in the metro=-
politan region. The Hicks methodology has been in use for more than 25
years in the city of Los Angeles and its satellite communities, but has
not found wide use among designers in other cities. Extensive studies
of a hydrograph method have been made by the city of Chicago. A detailed
explanation of the hydrograph type of analysis used there is presented
by Tholin and Keifer (1960), and of the synthetic storm pattern by Keifer



and Chu (1957). Both a summary of the method and a comparison of mea-
sured and computed runoffs are given by Jens and McPherson (1964).

An inlet method which is essentially the same as the hydrograph
method was studied at the Johns Hopkins University (1955 to 1963;
Viessman and Geyer, 1962; Schaake, Geyer, and Knapp, 1964; Schaake, 1965)
and New Mexico State University (Viessman and Abdel-Razaq, 1964;
Viessman, 1966 and 1968). Based on rainfall measurements and inlet and
sewer gagings in urban areas at Baltimore, Md. (Knapp, Schaake, and
Viessman, 1963), and other municipalities (McPherson, 1958), the inlet
method determines the flow to each inlet; attenuates the peak flow from
each subarea (group of inlets) as it moves down the storm drain; and
sums the attenuated peaks to determine the total peak at the design point.
The inlet method is summarized by Jens and McPherson (1964) and also by
Kaltenbach (1963).

Another approach, the unit hydrograph method (Eagleson, 1962),
depends on the correlation of characteristics of measured sewer outflow
hydrographs from urban areas of varying types, to permit construction of
synthetic unit hydrographs for areas under design. Outflow hydrographs
developed by the unit hydrograph method have particular application to
the sizing of impounding basins and drainage pumping stations, for which
the rational method provides no sound basis for design.

In recent years there has been increasing research activity in the
field of urban hydrology. Several mathematical models yielding various
degrees of accuracy in the prediction of the runoff hydrograph have been
developed by many investigators. A qualitative review of several of
these models is given by Linsley (1971). Worth further investigation
are some of such urban models developed by the British Road Research
Laboratory (Watkins, 1962; Terstriep and Stall, 1969), the Environmental
Protection Agency (EPA) (Metcalf and Eddy, Inc. et al., 1969 and 1971;
Chen and Shubinski, 1971), and the University of Cincimmati (Papadakis
and Preul, 1972; Preul and Papadakis, 1970 and 1972). Papadakis and
Preul (1973) compared the computer results obtained from the University
of Cincinnati (UC) model, EPA Storm Water Management (SWM) model, Chicago
hydrograph method (Tholin and Keifer, 1960), and Road Research Laboratory
(RRL) model. Heeps and Mein (1974) also applied the RRL model, SWM
model, and UC model to several storms on two urban watersheds in Australia,
but their results did not support the Papadakis and Preul’s finding that
the UC model performed better than the RRL model and SWM model. Singh
(1973) suggested more exact and complex methods of process simulation
than the preceding three models after making his criticism and comparison
of model simulation procedures used in the three models. A brief descrip=
tion of the differences in the three simulation procedures before storm
water enters the inlet will be helpful to the present study in which a
more detailed and comprehensive mathematical model will be developed to
simulate the rainfall-runoff process on an urban highway watershed.

The most unusual and controversial features of the RRL model are
that the areas contributing to storm runoff are taken to be only the



impervious areas directly connected to rhe sewer system, and that these
impervious areas have a runoff coefficient of 100 percent. Overland flow
on these contributing areas is simulated by combining the rainfall
hyetograph and an assumed linear time versus contributing area diagram )
(time=-area routing) for each inlet. The assumed constant time of entry

at an inlet is the time required for all the directly.connected impervious

area tributary to the inlet to contribute to runoff. No allowance is

made for surface storage.

Overland flow in the SWM model is simulated by storage routing using
Manning’s equation and the equation of continuity, assuming that the
hydraulic radius is equal to the depth of flow. The depth of flow is
assumed constant along the length of the overland flow plane during any
given time interval. Depression storage is treated in such a way that
overland flow does not begin until the depression storage is full. How=
ever, 25 percent (arbitrary) of the impervious area is assigned zero
depression storage to simulate immediate runoff. Infiltration on the
pervious areas is represented by Horton’s equation and may be satisfied
by the rainfall during a time step, the depth of detention storage from
the previous time step, or the water in depression storage.

The UC model in general considers the same catchment processes as
the SWM model, but differs in simulation techniques. The UC model accepts
only catchments which are wholly pervious or wholly impervious. In other
words, any subcatchment has to be represented by two equivalent sub-
catchments-one pervious, the other impervious. Overland flow is considered
by an analytical method based on an empirical relationship between outflow
depth, detention storage, and detention storage at equilibrium. This
empirical relation, together with Manning’s equation and the equation of
continuity, provide a solution for overland flow. Depression storage is
simulated by an exponential relationship which assumes that the rate of
filling is proportional to the unfilled volume. Infiltration on the
pervious subcatchments is simulated by subtracting Horton’s infiltration
capacity curve from the rainfall time distribution, the infiltration
curve being time-offset if the initial rainfall intensity is less than
the initial potential infiltration rate.

In another approach similar to the aforementioned, more-frequently=
referred, three models, Offner (1973) divided the runoff surface into a
grid of square coordinates with size appropriate to the degree of surface
irregularity and then on each square element assigned four parameter
values describing the mass balance of outflow and inflow to the element.
Overland flow is simulated by using Izzard’s equation (1944, 1946) in
the case of laminar flow, and if his limit for laminar flow is exceeded,
using the equation for turbulent flow {(Horton, 1935).

Another type of urban runoff model proposed by Anderson (1970) and
Chien and Saigal (1974) is also similar to the above three models, but
in a much simplified (practical) fashion. Anderson (1970) assumed a
triangular shape for a basic hydrograph so that the total hydrograph for
a given location was obtained by adding together several triangular



hydrographs. Chien and Saigal (1974) on the other hand proposed the
linearized subhydrographs method in which runoff coefficient is used to
compute the peak rates of runoff; linear variation.of the rising limb and
the receding limb of the subhydrograph for a small basin is assumed and
superimposed; and kinematic wave time to equilibrium is used as a factor
for the determination of subhydrographs. .

There are equivalent simplifications (or complexities) in the simula-
tion of gutter flow among the existing urban runoff models, but most of
them were developed based on uwniform flow storage routing using Manning’s
formula. Most sewer flow was also simulated in the same way as gutter
flow through storage routing using the equation of continuity and Manning’s
equation., It is noted that a sound procedure to route storm water through
a storm sewer by using a digital computer was already developed elsewhere
(Yevjevich and Barnes, 1970; Pinkayan, 1972). Since in the present study
only storm water before its entry to the drainage inlet is considered,
further analysis of sewer flow is beyond the scope of the present study.
The most comprehensive mathematical model including all physical processes
of runoff is thus developed herein for routing storm water through the
drainage inlet. Formulation of a new method to accurately simulate urban
highway runoff will be useful to attack storm drainage and associated
problems in urban highway areas.

Objectives and Scope of the Present Study

The main objective of this study is to develop, by using a flood
routing technique, a general computer model which can predict runoff
from an urban highway watershed under time=- and space-varying rainstorms.
The three specific objectives are: (1) to formulate a rigorous one-
dimensional surface flow model in the curvilinear orthogonal coordinate
system, or a simiplified form thereof, which simulates the flow on the
curved crown around a curved path on the straight or curved road surface;
(2) to examine the validity and accuracy of the computer model using
available existing data and field data collected from two typical urban
highway watersheds in the Salt Lake City area; and (3) to study the effects
of rainstorm and watershed parameters, such as the direction and magnitude
of movement of the storm, the roughness, slope, curvature, length, and
width of the roadway and shoulder, the gutter slope, infiltration charac-
teristics of sideslope with various soils and plant covers, etc., on the
inlet hydrograph.

Highways are built with crown or cross slopes to provide lateral or
oblique drainage flow to the sides of the pavement, and in the case of
curves, lateral or oblique flow due to superelevation of the pavement
and shoulders. In urban areas, the recommended practice, if erosion is
not a problem, is to allow the drain water to flow from the pavement,
across the shoulder, and down the sideslopes to side ditches. However,
in places of limited space, it is necessary to provide a curb along the



outer edge of the pavement to conduci the flow to catch basins or other
collecting devices, from which it is removed through a storm sewer system.
In a broad sense, a highway watershed includes those areas within two
adjacent highway drainage inlets (spaced from 400 to 1,000 ft) and the
right-of=way (spaced from 200 to 400 ft) made from paved road surface
(roadway), paved shoulder, sideslope or back slope (paved or grassed),
median, gutter (paved or grassed), side ditch, and natural drainage area.
To study the runoff process from such a small urban highway watershed
requires a knowledge of flow lines and watershed divides, because within
the right~of-way there are few such sub-watersheds on which storm water
is routed independently of each other. For example, one of the highway
sub=watersheds is made of a roadway and a curb-type gutter only. This
sub=watershed is bounded by a fixed highway watershed divide which is a
line connecting the vertices of the cross profiles of the roadway, two
flow lines which pass two adjacent highway drainage inlets, and the curb.

Physically, runoff from a roadway under a moving or stationary
rainstorm is a special case of the general watershed flow (Chen and Chow,
1968 and 1971). The runoff process on a roadway conceptually consists
of two parts: (1) overland flow on the crown of the road surface; and
(2) channel {or gutter) flow in the gutter. The water moving as overland
flow meets with that in the gutter, most of which flows into the highway
drainage inlet with part of it to be carried over. In the mathematical
simulation of such flows, theoretically speaking, three-dimensional flow
equations may be formulated (Chen and Chow, 1968 and 1971), but for
simplicity overland flow and gutter flow each may be threated as the one-
dimensional flow in space with time taken as another independent variable.

A mathematical model which consists of a set of one-dimensional flow
equations, initial conditions, and boundary conditions, can be formulated
for combined overland flow and gutter flow. The one=dimensional, spatial=
ly varied unsteady flow equations, commonly used in open channel, can be
developed for such flow and then sclved numerically on a digital computer,
subject to specified initial and boundary conditions.

One of the hardest boundary conditions to cope with is at the junc-
tion or interface between the downstream end of the overland flow and any
point of the gutter flow. This interface between overland flow and gutter
flow may be referred to as an ¢“internal’’ boundary which may move with
space and time. Conditions at this internal boundary (Chen and Chow, 1968
and 1971) must satisfy the flow variables of both types of flow at that
point.

The boundary at the crown of the roadway is a fixed watershed divide
where it may be assumed to have a zero flow velocity. The condition
at the drainage inlet is an overfall condition which may or may not be
utilized for solution, depending on whether the flow at the inlet is sub-
critical or supercritical. Both boundary conditions at the highway water=
shed divide and the drainage inlet may be referred to as f‘external?®’®
boundary conditions, in contrast with the movable internal boundary



conditions prescribed at the interface between overland flow and gutter
flow.

Different types of drainage inlets, such as grate inlets and curb-
opening inlets, with or without gutter depression, have been proposed to
withdraw stormwater from the gutter. Because none of,the existing inlets
can function with 100 percent efficiency, part of the stormwater in the
gutter which cannot enter an inlet will automatically become an input
(i.e. carry-over) to the subsequent gutter flow at the upstream end of
the gutter. The rate of carry-over flow depends on the approaching depth
and velocity at the inlet as well as the type of -the inlet installed.

The inlet characteristic curves or relationships developed by Horner
(1919), Tapley (1943), Larson (1948 and 1949), Izzard 9(1950), Li et al.
(1951 and 1954), and Knapp et al. (1963) may be used as downstream
boundary conditions at the inlet. However, none of these relationships
developed has been proved to be satisfactory in application. Therefore,
for simplicity, efficiency at the inlet will be assumed 100 percent and
no carry=-over flow will be imposed at the inlet.

The initial conditions on a dry surface of zero depth and velocity
are of a singularity type requiring judicious assumptions of small depth
and velocity in order to be able to start the computation numerically.

The flow equations (i.e., the Saint-Venant equations) will be ex-
pressed in the form of a set of quasi-linear partial differential equa-
tions. As will be reviewed in the following section, many numerical
techniques have been developed to solve such a set of hyperbolic partial
differential equations. Because the problem under study is only concerned
with a relatively small basin area and a short-duration thunderstorm, use
of an explicit finite-difference scheme with specified rectangular grid
intervals based on the method of characteristics is believed to be more
suitable than other methods in the numerical solution.

Although it has long been recognized that the flow equations for
spatially varied unsteady flow in open channel can have discontinuous
solutions (Dressler, 1949), a special technique by use of a pair of shock
equations (i.e., rapidly varied flow equations) coupled with character=
istic equations must be developed for tracing a bore or a train of such
bores for which the method of characteristics fails to hold because
characteristic in the same class cross each other. A useful application
of this technique is in the computation of the wavefront which outraces
the front of a moving rainstorm.

The advancing wavefront of the surface flow may outrace, or move at
least with the same velocity, as the front of a rainstorm. In case the
front of the flow outraces that of the rainstorm, the flow problem under
study is similar to the dam~breaking problem (Stoker, 1957) and the
method used in analyzing such a problem may be applied. However, a
simplifying assumption must be introduced to overcome the singularity
problem that is inherent at the leading edge of a wavefront moving on a



dry surface. If the front of the flow advences with that of the rain-
storm, the front of the flow may be assumed as a point in the continuous
flow so that it can readily be computed by simply using the character=
istic equations without resorting to the shock equations.

Following the review of literature on the flood iouting techniques
and associated numerical schemes, the mathematical model of surface runoff
from an urban highway watershed under a moving or stationary rainstorm
will be formulated and then solved on a digital computer. Computer
solutions will be obtained for a variety of actual or design storms and
drainage conditions commonly encountered on the urban highway. Signifi=-
cant dimensionless parameters which control the runoff process on the
highway watershed will be identified and evaluated through sensitivity
analysis. Comparison of computed inlet hydrographs with field data will
also be performed for verification of the computer model.

Because of the difficulty in arranging what needed to be reported
in one volume, some of the results will be presented without elaborating
their detailed derivations and implications as far as no confusion and
misunderstanding will arise. Those portions skipped from detailed
analysis and presented in other volumes of the final report under
separate subtitles are: Vol. 2. Laboratory studies of the resistance
coefficient for sheet flows over natural turf surfaces; Vol. 3
Hydrologic data for two urban highway watersheds in the Salt Lake City
area, Utah; Vol. 4. Synthetic storms for design of urban highway
drainage facilities; Vol. 5. Soil-cover-moisture complex: Analysis of
parametric infiltration models for sideslopes. '



LITERATURE REVIEW OF RUNOFF MODELING AND

ROUTING TECHNIQUES

§

The surface runoff from a watershed due to a rainstorm varies with
the hydrometeorologic characteristics of the rainstorm and physiographic
properties of the watershed. In literature many studies deal with the
effects of the physiographic properties of watersheds on the runoff
hydrograph, but only few studies are concerned with the influences of the
movement of rainstorms on rainfall-runoff relationship (Amorocho and
Orlob, 1961; Maskimov, 1964; Marcus, 1968; Yen and Chow, 1968 and 1969;
Hill, 1969; Wei and Larson, 1971). A study of the combined effects of
such hydrometeorologic factors of moving rainstorms and physiographic
factors on the runoff process is even more meager (Iwagaki and Takasao,
1956). It is the intrinsic complexity of flow phenomenon under such
combined effects that has prevented us from analyzing it in a more funda-
mentally sound fashion. Nevertheless, advent of an electronic computer
and its ability to implement existing numerical methods have stimulated
great interest in seeking the solution of such a complicated problem.

Surface Runoff Models

The flow on a runoff surface under a moving rainstorm is not diffi-
cult to describe mathematically by using the concepts of fluid mechanics.
Rigorously speaking, the mathematical model of the surface flow to be
developed consists of a set of three-dimensional instantaneous unsteady
flow equations (i.e., the three-dimensional instantaneous equations of
continuity and motion-the Navier=-Stokes equations—for unsteady free-surface
flow) with adequately prescribed three-dimensional instantaneous initial
and boundary conditions. However, to obtain a solution by using a
modern high=speed electronic computer from such a three=-dimensional
instantaneous model, a numerical method, if it ever exists, could result
in an extremely lengthy computer program that is likely to be either
uneconomical or beyond the capacity of the computer presently available,
or both. A three-dimensional model may be simplified to a two-dimensional
plane~flow model, application of which however is limited to a laboratory
watershed flow (Chow and Ben-Zvi, 1973). 1In practice, the best way to
circumvent this difficulty is to treat the surface flow in a watershed
as a combined system of ¢‘hydraulic’? (or one-dimensional) flows (Chen
and Chow, 1968 and 1971) which are hydrodynamically distinguishable from
each other. For example, the water on the crown of the roadway moves as
overland flow, while the water in the gutter moves as channel flow. Both
can be treated as one-dimensional flows. A combination of overland flow
and chamnel flow with internally coupling boundary conditions between
them can adequately describe the shallow water movement on the roadway
with curb. When one-dimensional flow is nonuniform and unsteady, as is



always the case in the runoff process, it may be called spatially varied
unsteady flow.

Spatially varied unsteady flow consists of both gradually varied
unsteady flow and rapidly varied unsteady flow. The equations of one-
dimensional gradually varied unsteady flow can be derived from the three-
dimensional flow equations by means of the time and space averaging
process (Chen and Chow, 1968 and 1971; Strelkoff, 1969; and Yen, 1972 and
1973). The equations. of one~dimensional rapidiy varied unsteady flow,
can be formulated from volume-integrated one-dimensional equations of
continuity and momentum or energy (Stoker, 1957; Chen and Chow, 1968;
Terzidis and Strelkoff, 1970; Yen, 1973). The relationships between
dependent variables (i.e., the depth and velocity of flow) for gradually
varied unsteady flow can be expressed in the form of a set of quasi-
linear partial differential equations while those for rapidly varied
unsteady flow, if isolated, may be formulated in the form of algebraic
relationships between conjugate depths and velocities at the point of dis~-
continuity and propagation velocity of discontinuity. Both relationships
are needed in the computation of surface flow on the roadway as well as
in the gutter, specifically at the points of discontinuity, such as the
places where overland flow meets gutter flow, moving hydraulic jumps and
rolling waves occur, and the leading edge of the wavefront moves on the
dry surface.

Numerical Techniques

Many techniques have been developed to solve numerically the
gradually varied unsteady flow equations with appropriately prescribed
initial and boundary conditions. Among those techniques reported (e.g.,
Richtmyer, 1962; Yevjevich, 1964; Dronkers, 1964 and 1969; Liggett and
Woolhiser, 19673 Strelkoff, 1970; Gunaratnam and Perkins, 1970), the
method of characteristics (Courant and Friedricks, 1948; Stoker, 19573
Courant and Hilbert, 1962; Garabedian, 1964), because of its advantages
such as suitability, accuracy, and efficiency in computation over other
methods (Liggett and Woolhiser, 1967), has been used widely for computing
the propagation of floods, tides, wind waves, etc., in rivers and
homogenecus estuaries and on beaches. Studies conducted by Isaacson,
Stoker, and Troesch (1958), Whitham (1958), Freeman and Le Mehauté (1964),
Lai (1965), Amorocho and Strelkoff (1965), Strelkoff and Amorocho (1965),
Amien (1966), Fletcher and Hamilton (1967), Baltzer and Lai (1968),
Liggett (1968), Chen and Chow (1968), Mozayeny and Song (1969), Ellis
(1970), Wylie (1970), and Yevjevich and Barnes (1970), Pinkayan (1972),
among many others are good examples of its application.

The major disadvantage of the characteristic model results from the
necessity to store those computed for later interpolation and tedious
computer programming to obtain the water surface and velocity profiles



at a desired time level from the calculated coordinates and the correspond-
ing depths and velocities of flow at such coordinates. This drawback,
nevertheless, can be overcome by adoption of a rectangular grid network

in the x, t-plane incorporated with the characteristic equations (Stoker,
19573 Amorocho and Strelkoff, 1965; Strelkoff and Amorocho, 1965) or both
the characteristic curves and the characteristic equations (Lai, 1965;
Streeter and Wylie, 1967; Baltzer and Lai, 1968; Chen and Chow, 1968;
Wylie, 1970). The latter is an alternative technique which combines the
accuracy of the method of characteristics with the convenience of a
rectangular net.

Both explicit and implicit schemes can be used in the formulation of
characteristic difference equations. However, there are some advantages
in the computation by using an explicit scheme. For example, solving the
characteristic difference equations formulated in an implicit scheme
requires the simultaneous solution of a set of the nonlinear equations,
but not for those equations in an explicit scheme. Even though expressed
in an explicit scheme, the characteristic diffgrence equations formulated
at the point of intersection of the forward (C') and backward (C7)
characteristics originating from the known time level can be nonlinear
in unknowns at that point. The simultaneous solutions of such a pair of
nonlinear equations are difficult, but can be obtained by using an
iterative procedure suggested by Liggett and Woolhiser (1967). If the
forward and backward characteristic equations are linear in unknowns,
such as formulated by Stoker (1957), Lai (1965), Amorocho and Strelkoff
(1965), Strelkoff and Amorocho (1965), Streeter and Wylie (1967), Baltzer
and Lai (1968), Chen and Chow (1968), and Wylie (1970), they can readily
be solved for one grid point at a time. A computation procedure for
solving such linear characteristic difference equations may be classified
into the explicit scheme based on characteristic equations (Strelkoff,

1970).

Stoker’s (1957) explicit scheme is only valid for flows at Froude
numbers less than unity (i.e., subcritical flow), because the x=partial
derivatives associated with the forward characteristic equation involve
space increment to the upstream of the secticn in question while those
associated with the backward characteristic equation involve the one to
' the downstream. The preceding expression of the x-partial derivatives
associated with the backward characteristic equation is obviously invalid
for supercritical flow, in which the backward characteristic curve lies
to the upstream of the section in question instead. The explicit scheme
based on characteristic equations can be made to be applied to both sub-
critical and supercritical flows if the orientation of the backward
characteristic curve is also taken into account. The scheme used by
Streeter and Wylie (1967), Chen and Chow (1968), and Wylie (1970) belongs
to this category. The latter scheme is adopted in the present study.

Explicit schemes are stable only if the time interval used in the

computation is sufficiently small. The criterion which sets the maximum
size of this interval is referred to as the Courant criterion or condition
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(Courant and Friedricks, 1948; Courant and Hilbert, 1962). For stability
of explicit schemes, the Courant criterion must be satisfied; however,
the explicit scheme would probably give the most accurate results if the
time interval used is close to its limiting value (Strelkoff, 1970).

One of the most difficult computations of unsteady free-surface flow
is the one with a moving hydraulic jump (i.e., sometimes called a shock,
surge, or discontinuity), or a train thereof. Various techniques {see,
e.g., Terzidis and Strelkoff, 1970) have been developed for computing grad=
ually varied unsteady flow with a bore or a train of such bores. There
are the method of characteristics (Faure and Nahas, 1961; Freeman and
Le Mehduté, 1964; Chen and Chow, 1968), von Neumann=-Richtmyer method
(1950), Lax method (Lax, 19543 Keller, Levine, and Whitham, 1960), Lax-
Wendroff method (1960), and Lax~Wendroff=Richtmyer method (Terzidis and
Strelkoff, 1970). Of all, the method of characteristics combining a
pair of the algebraic shock relationships with the characteristic
difference equations along characteristic curves appears the most suitable
to the explicit scheme based on the characteristic equations. All the
methods listed above, with the exception of Chen and Chow (1968), seemingly
assume that the initial state contain a bore and in their present forms
of computation procedures are not capable of treating problems in which
bores develop.
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MATHEMATICAL FORMULATION OF SURFACE RUNOFF

The basic laws governing the movement of water on the runoff surface
are the principles of conservation of mass and momentum. BRased on these
laws, the flow equations (i.e., the equations of continuity and momentum)
can be formulated. In the derivation of the flow equations, the flow on
the runoff surface is considered as a single stream=-tube bounded by two
stream surfaces: the free water surface and the ground. surface. For
convenience, the flow on the roadway may be divided into two regions:
overland (or road surface) flow and channel (or gutter) flow. The outflow
from the downstream end of the overland-=flow part is considered as the
lateral inflow to the channel flow. The location of the internal boundary
between the overland flow and channel flow depends on the depths and
velocities of both flows at the point of intersection which must satisfy
the internal boundary conditions.

Although the roadway is usually constructed with a parabolic trans-
verse profile, the formulation of the flow equations for overland flow and
channel flow will be generalized so that the flow equations developed
can be applied to both overland and channel flows. The coupling of
channel flow to overland flow is accomplished by specifying internal
boundary conditions along a line which separates the two types of flow.

In the formulation of the flow equations, raindrops falling on the
road surface will be treated as a continuous medium of water. The flow
equations will be derived first for nonprismatic channels and later sim~
plified to those for prismatic channels.

Flow Equations

The equation of continuity

For one=dimensional free-surface flow with lateral inflow, the
equation of continuity may be derived by considering an elementary
control volume of water bounded by two cross=-sections of average top
width T which are an infinitesimal distance, ds, apart (Figure 1), the
water surface, and the boundary of the channel. The water flowing out
of minus the water flowing into the control volume in ds during
infinitesimal time, dt, is (3Q/9s) ds dt and this must equal the change
in channel storage (9A/3t) ds dt plus the volume due to rainfall and
infiltration (¥ = I) T ds dt cos® and due to lateral inflow qp ds dt.
Hence, for incompressible fluid, the principle of conservation of mass
requires that
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Figure 1. Definition sketch for flow profile.
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%Q ds dt + oA ds dt = (¢ - 1) T ds dt cos © + ﬁL ds dt -

9s ot .
. . . . . . AD
or
0Q JA

5;—} Fre (r ~ i) T cos 6 + q . . . . . (2)

in which A 1is the cross=sectional area of the channel normal to the
direction of flow; T and i are the average rainfall intensity and
infiltration rate, respectively, measured in the direction of gravity
over the elementary volume in dt; § is the average angle of inclination
that channel bed makes with the horizontal plane; and &L is the rate of
the lateral inflow from the downstream end of the overland flow to
channel flow per unit length of channel flow. Equation 2 is the general
continuity equation for one-dimensional free-surface flow with lateral
inflows in a channel.

The equation of momentum

According to the principle of conservation of momentum, the total
rate of momentum change in an elementary volume of water equals the net
force acting on it. The forces acting on the elementary volume include
the pressures on the two flow cross=-sections, the weight of water, the
friction and the forces due to raindrop impact. By assuming that the
pressure distribution is hydrostatic, the total pressure on a flow cross-
sectional area, A, is equal to wA h cosze, where w is the specific weight
of water, and h is the distance from water surface to the centroid of
A measured in the direction of gravity. Considering all forces acting
on the control volume in the direction of s axis, the total resultant
pressure force, Fp’ is

_ 9(wAh cosZG)

b 5 ds . . . . . . . . . a (3)

The force due to the weight of water, Fg’ is

Fg = wA sin6 ds . . . . . . . . . . (4)

The friction force, Ff’ is
F,.= wA S_.ds . . . . . . . . . . . 5
f 7 )

in which S, is the friction slope. An additional pressure caused by
the raindrop impact may be distributed uniformly over the flow cross-
sectional area (Chen and Chow, 1968). This additional pressure may be
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referred to as’ overpressure. The total overpressure can be expressed
by wA h*, where h” is the overpressure head and is expressed by Chen
and Chow (1968) as:

*

h = —r A cosf cos(8+d) . e . . . . . . (6)

0 |6

in which g is the acceleration of gravity, r is rainfall intensity, A
is ‘the mean terminal velocity of raindrops, and ¢ is the angle of in-
clination that the mean terminal velocity of raindrops makes with the
vertical line (Figure 1), and ¢ 1is the concentration of raindrops and
is defined as '

c=-— I —-ﬂ@% . . . . . . . . . (7a)
: ) i
i=1

The concentration of raindrops is the percent of the area for ¢‘n”’
number of raindrops of size, 61, for i=1, 2, ..., n, occupying a unit
area, AB, in unit time, dt, assuming that no point within AB is hit
by more than one raindrop during dt.’ Furthermore, if the average dia-
meter of raindrops, ¢, is assumed and the number of raindrops, n, is
computed by dividing the total volume of raindrops occupying AB during
dt (seconds), (r/60 x 60) AB dt, by the volume of a raindrop, u63/6,
then Eq. 7a reduces to

1.5r dt

¢ = €0 x 606 . . . . . . . . (7b)

which is expressed in terms of r, ¢, and dt. Incorporating the over=
pressure head with the total resultant pressure force, Fp, yields

- 2 *
_ 9[wA(h cos™® + h )]
P os

ds . . . . . . . (8)

The momentum, Mf, of the elementary volume of water at time, t, is

Mt = pAV ds . . . . . . . . . . . 9)

where p is the mass density of water, and V is the velocity of flow.

The momentum Mt + de at time (t + dt) is

Mt+dt = p(A + dA) (V + dV) (ds + dds) . . . . . (10)
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where dA is the change in area, A, in time interval, dt; dV is the
change in velocity, V,.in time interval, dt; and dds is the change in
length, ds, in time 1nterval dt. Since

x _ OA ?_A__ _ SA | dA .
dA = g-s-ds + dt = (V s + —Bt)dt . . . . - (11).
NEI S |
dv = ——das S de = (v s + at)dt . . . . . (12)
A
dd}S = s ds dt . . o . o . . . . . . (13)

in which ds/dt is taken as V. Substituting Eqs. 11, 12, and 13 into Eq.
10 and neglecting differentials of higher order gives

M, =0 [AV + (A—3‘1+v gﬁ v 2o Y dt] ds
. e e e (14a)
or
3 (AV) 3 (A7%)
Mt‘i“dt =P [AV + {“—‘B—E“ + T} dt] ds . . . (14b)

During the time interval, dt, there is also a momentum influx, dM

T?
from rainfall in the s=direction, which can be expressed as

er = prTeh sin (8 + &) ds . . . . . . . . (15)

There is also a momentum influx, , due to lateral inflow, which
has a velocity component in the s-direction equal to u sin ¢, where
is the approaching average velocity of overland flow, and ¢ is the
angle between the direction of overland flow and that which is perpendi-
cular to the chamnel flow, as shown in Figure 2. This momentum influx
can be expressed as

dM‘=paﬁLsinwds .. e e e . . .

L . (16)
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‘ Thus, applying the principle of conservation of momentum to the
control volume by using Eqs. 4, 5, 8, 9, 14b, 15, and 16 and assuming
that the momentum efflux due to infiltration is negligible yields

M - M
t+dt t _ ¢
dt er-dML-Fg Fp Ff. . . . . e (17a) |
or i
3(AV) 9 (AV2) - _ —
5T + e = YTeh sin (6 + ¢) = qu siny

2

= gA sind - gAS, - ga_as" [A(R cos“8 + h™)] - ... (17b)

The left=hand side of Eq. 17b represents the rate of the change in the
momentum across the surface of the elementary volume. Since the velocity
distribution of the channel flow and lateral inflow are not uniform, a
momentum correction factor must be introduced to each of these two terms.
Thus, Eq. 17h becomes

2(AV) . 3¢ BAVZ)
ot o8’

= rTeh sin (6 + @) - BL uqp siny
. | . ) '
= gA sin6 - gASf - ggg-[A(h cosze + h*)] . . . . (17¢)

in which B is the momentum correction factor for the velocity distribu-
tion of the channel flow, and has a theoretical value of 1.2 for laminar
flow and 1 + 0.7812f for turbulent flow, where f is the friction co-
efficient [see Iwasa (1954) and also Appendix 1 for the derivation of the
theoretical B value]; and g, is the momentum correction factor for the
velocity distribution of lateral inflow. Thus, Eq. 17c is the general
form of the equation of momentum for channel flow.

From computer results obtained for several different rainstorm
conditions, it was found that within the range of input data the effect
of the g value on the outflow hydrograph was insignificant. Therefore,
for simplicity the 8 value was assumed to be unity in the present study.
Despite this assumption regarding the g value, the B and By will be
retained in the following equation of motion, as expressed in Eq. 17c,
throughout this investigation unless stated otherwise.

The general equations of continuity and motion, Egs. 2 and 17¢
developed for channel flow can be applied to overland flow because over~

land flow is actually a wide open=channel flow, in which . = 0 and flow
variables such as Q and A must be expressed per unit width.
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As far as the derivation of Egqs. 2 and 17c is concerned, no
assumption regarding the cross=-sectional shape, curvature, and alignment
of the channel has been imposed. Both equations are applicable to flow
in nonprismatic channels as well as on the cross profile of the roadway
which in the case of concrete is a parabola with its vertex at the crown.

§

Evaluation of the friction Slope

In one-dimensional flow, the friction slope S, can be expressed by

the Darcy=-Weisbach formula, £
_ V2 18
Sf 8aR . . . . . . . . . . . (18)

in which f is the Darcy-Weisbach friction coefficient, and R . is the
hydraulic radius. To compute Sp by using Eq. 18 requires a knowl-

edge of the value of f, which has yet to be determined for overland flow
with shallow depth in the order of the roughness size. No theoretical
formula has been developed for sheet flow except for the following special
cases, which can be found elsewhere (e.g., Rouse, 1965; Chow, 1959):

For turbulent flow on the rough surface,

1 2R
:/?'— 2 log10 -+ 1.74 . . . . . . . . (19)

k
in which k is the roughness size of texture of the runoff surface.
For turbulent flow on the smooth surface,

1 _
;;;—- 2 log,, R Yf + 0.404 e e e e el (20)

in which R = VR/v is the Reynolds number.
For laminar flow,

r=g e €3

in which C is a constant that depends on the cross=sectional shape of
the channel (Chow, 1959) and in the case of sheet flow on the rainfall
intensity and channel slope (Wenzel, 1970; Yoon, 1970; Yoon and Wenzel,
1971; Woo and Brater, 1961 and 1962). The value of C for sheet flows
over natural turf surfaces was experimentally determined and reported
in the laboratory phase of this study (Chen, 1975a).

For flow in the transition region, an empirical formula for the

computation of f is available, but is not reliable enough to be used in
this study because of the technical difficulty in adaptation to complete
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description of /' by Eqs. 19, 20, and 2i. Equations 19, 20, and 21, as
shown in Figure 3, are computed with the Reynolds number, R, as a con-
trolling parameter for the selection of the equations and hence the deter-
mination of the [ value.

Initial Conditions

If the ground surface is initially (t = 0) dry, then
V=20 . . . . . . . . . . . (22)

h=20 . . . . . . . . . . . (23)

in which h is the depth of flow. As h = 0, the cross=sectional area
of flow, A, top width, T, hydraulic depth, D, and hydraulic radius, R,
all become zero. The initial conditions specified by Egs. 22 and 23
are singularity conditions, which would result in an immediate problem
to obtain the solutions to the flow equations. Some judicious assump-
tions have to be made to overcome this singularity problem. Details of
the assumptions will be discussed later.

Boundary Conditions

As mentioned previously, the boundary condition at the inlet changes
as the flow changes from subcritical to supercritical and vice versa. The
Froude number can be used to describe such changes in the state of flow.
It will be shown later in this study that the Froude number, ¥, under the
effect of raindrop impact must be defined somewhat differently from a
conventional way (Chow, 1959); that is, with the overpressure head, h*,
(Chen and Chow, 1968 and 1971)

\4
F =
Vg(D cosd + h¥) /B

e e e e e e (24)

This definition also includes the correction factors for channel slope,
0 and momentum correction factor, B . If the Froude number defined in
Eq. 24 is less than, equal to, or greater than unity, the flow is
referred to as suberitical, critical, or supercritical.

The external and internal boundary conditions will be described
separately as follows.

19



f, friction coefficient
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Figure 3. Selection of friction coefficient, f.
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External boundary conditions

Upstream boundary condition. The upstream boundary condition is

Q, = AV e e e e e, . (25)

in which Qy is the discharge at the upstream end. For overland flow,

Qu can be assumed equal to zero, whereas for gutter flow, it is equal to
the carryover flow rate from the upstream adjacent gutter. If the inlet
is assumed to be operated at 100 percent, Q, is again set equal to zero.

Downstream boundary condition. The boundary condition at the inlet
of a highway watershed is an overfall condition which depends on the flow
characteristics. The flow before reaching the outlet can be either sub=
critical or supercritical. If it is subecritical, the overfall condition
prescribed at the outlet is

F = v
Vg(D cosb + h¥)/B

=1 e . . . . . . (26)

which states that the outlet is the critical section where the Froude
number is unity. No condition exists for supercritical flow.

Internal boundary conditions

The internal boundary conditions can be derived by using the con-=
tinuity and momentum equations formulated around the neighborhood of a
discontinuity in flow variables (Stoker, 1957). Let ; be the propaga-
tion velocity of the discontinuity along the direction of flow. Then
ignoring the length of the discontinuity the law of conservation of mass
yields

AL(VL-é)=AR(vR-é) N €Y 2D

or

AV ARV

ALt AR '

Eom S Y )

in which A and V are the cross=sectional area and velocity of flow,
respectively, with subscripts “‘L’? and ‘‘R’® referring to the left~hand
(upstream) side and right-hand (downstream) side of the discontinuity,
respectively. By taking into account the effect of the raindrop impact
(Chen and Chow, 1968) and applying the law of conservation of momentum
to the same neighborhood of the discontinuity and then incorporated with
Eq. 27, the following expression for Vy is obtained:
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V= Ve (A - ARI[;EXR (ALii : iEFR cos?0 + h*>:]1/2

. . . . o e (28)

in which EL and ﬁR are the depths of the centroids of the cross-
sectional areas of flow, Aj and Ag, respectively. Note that in Eq.
28, the difference between A; and AR is expressed in absolute
value so that the equation is applicable to both cases of Ay, < A and
A7, > AR. Equations 27 and 28 constitute the internal boundary con-
ditions that must be satisfied at the moving hydraulic jump, the bore,
the wavefront, and the intersection between overland flow and chanmel
flow. There are five flow variables: £s Vi, VR, Ap, and AR in
Egs. 27 and 28. I1f three of them are known or solvable from other
conditions or equations, the rest of the five variables can be obtained
from Eqs. 27 and 28. .

It is noted that A and AR are the conjugate cross=-sectional
areas at a bore and the one on the front side of the bore is always
smaller than that on the back side of the bore (Stoker, 1957). Two
general cases of the dynamic behaviors of a bore result as a consequence
of such definition regarding the front and back sides of the bore. Sev-
eral inequalities among the five flow variables can be established for
both cases (Chen and Chu, 1973), which are useful in the computation of
the generation and propagation of the bore. Thus, from Eqs. 27 and 28
or alternative forms thereof, the following inequalities at the bore can
be developed:

For V. > Vp > £ and AL < Ags

|v, = €| > v&(D_ cosé + h™) /B e e (29)

lVR - él < /g(DR cosd + h*)/Bl . .. . . . (30)

Equations 29 and 30 express mathematically the physical statement

that the velocity of flow relative to the bore is supercritical on the
front side (4) of the bore and subcritical on the back side (Ag) of the
bore (Stoker, 1957). Furthermore, from Eqs. 29 and 30, it can be
readily shown (Chen and Chu, 1973) that
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VL + /é(DL cosb + h¥)/B > VL - /ngL cosf® + h™)/B

> & >V, - /gD, cosb + n")/B R 1

This inequality reveals that there are two characteristics, CE and Ci s
on the front side and only one characteristic, CR » on the back side of
the bore meeting at the point of discontinuity.

For 5—;>VL> Ve and A > A,

IVL - él < /g(DL cos® + h™)/B e h e e e (32)

|V, - €] > Yg(d, cos® + h™)/8 N &)

whence

v+ /g(DL cosd + hY)/B > £ > Vp + /g(DR cosf + h™) /8

> Vp - /é(DR‘cose + h")/8 .. S (34)

In this case, obviously the front side of the bore is in a flow region
associated with Ag and the back side associated with A;. The inequal-~
ity, Eq. 34, again holds the same property that the front side has two
characteristics, Cﬁ and CR , while the back side has only one charac-
teristic, Cf , Mmeeting at the point of discontinuity.

The inequalities, Eqs. 29 through 34, can be used for the selection
of three characteristic difference equations in the numerical computation
of a bore. Details of computational procedures by using such inequal-
ities, the corresponding characteristic difference equations, and the
shock equations, Eqs. 27 and 28, especially for solving a moving wave~
front due to a rainstorm on a dry bed, will be given later.

The mathematical model of runoff from a dry surface under a moving
rainstorm thus consists of the flow equations, Egqs. 2 and 17c, the
initial conditions, Eqs. 22 and 23, and the boundary conditions, Egs.
25 through 28. Equations 2 and 17c form a set of quasi=linear partial
differential equations, which cannot be solved analytically with the
present knowledge in mathematics, except for a few special cases. It
is imperative that the analytical model so formulated be transformed into
a numerical form so that it can be solved by using a digital computer. As
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mentioned previously, an explicit scheme based on characteristic equations
was adopted in this study to formulate the numerical model. For conven-
ience in analysis and computation, the mathematical model will be first
normalized so that the significant dimensionless parameters that control
the runoff process from the runoff surface are also defined.

:
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NUMERICAL MODEL USING THE METHOD

OF CHARACTERISTICS

‘

The flow equations, Eqs. 2 and 17c expressed in terms of A and
Q .(or V) are valid for nonprismatic channels as well as for flow with
moving channel boundaries. However, if these flow equations are trans=
formed into those expressed in terms of the flow depth, h, and Q (or V),
a term representing departure of cross-sectional area from a prismatic
channel (Liggett, 1968; Strelkoff, 1969; Wylie, 1970) in the flow equations
complicates the numerical solution considerably. To solve the flow
equations for moving channel boundaries is evidently more difficult than
that for fixed boundary of nonprismatic channels because the spatial and
temporal variations of cross=sectional area for flow with moving bound-=
aries are unknown a priori, The flow on the roadway is very shallow in
comparison with that in the gutter, thus a term representing the change
in cross=sectional area of gutter flow due to the movement of the internal
boundary is believed to be of small order of magnitude and thus ignored.

Let A = DT, where D 1is the hydraulic depth, and assume that
dA = T dy, where y 1is the depth of flow section perpendicular to the
channel bed, y = h cos 6, d (Ah) = A dn, h* = constant along the s=-axis,
and S = sin 6. Then Egs. 2 and 17c can be transformed into the ones
expressed in terms of h and Q (or V), as stated. For convenience, the
flow equations so transformed are further normalized by using the follow~
ing dimensionless quantities:

Sy = S/Lo, h,=h cosGO/DO, Ve = V/V0

te = tVO/LO, D, = D/DO, T, = T/TO

r, = ;/ro, i, = E/ro, 9 = aL coseo/VODO

hi = h*/D_ cos6_, R, = -R/Ro, | Ay = AV,

uy = u/v, N € )

in which variables with asterisk subscripts are dimensionless quantities
and those with €“0’? subscripts are reference quantities. Specifically,
Lo is defined as the reference length which may be either overland-flow
length or chammel-flow length, or a combination thereof. After several
manipulations, Eq. 2 becomes

25



oh oh cosb oV L r
* * *
—+ V + ) 0 [(r*f-i* <—Vo>c0826

at* * Bs* cost * as* Do coseo

cost D 9 % .
+—2 (2 TL ] N & 1))
cos T0 %

If Eq. 36 is multiplied by gV, and then subtracted from the
normalized form of Eq. 17c, the normalized momentum equation in terms
of h, .and V, becomes

%
(1'_ 8) cosf Yf_ ohy + B cosb cosb Ef_ EEE_EYi
coseo D, at* F2 coseo coseo D* as* Bt*
o

+ gV Vs = Y B s -5y + * (2o cp, Sin0 + 0)
* 9s, D, cose0 FZ - Uf D, \Y, ® coseO
(o]

BV*i* r
- BV cosd > COSZGO + <-£l> cos® coseo

* cos0 " \
o o

. A% Do
+ (BLu* siny - BV*) B‘*—T—; T . . o . . . (37)
o

in which F, = Vo//gDO coseo73 , may be referred to as the normal flow
Froude number.

For brevity, the subscript asterisk used to denote the dimensionless
nature of the variables will be dropped hereafter in dimensionless. expres-
sions unless otherwise specified.

The normalized equations of continuity and momentum, Eqs. 36 and
37, form a set of hyperbolic partial differential equations, which are

in suitable form to be solved by the method of characteristics. Let Egs.
36 and 37 be identified by M1 and Mé, respectively; or

cosf L r
_ oh sh o . 9V 0 Loy [ O 2
M1 T + Vas + cosf D 9s D0 coseo [}r 1) <V6 > cos 9

cosb D q
o Q L
e . . . . . . . . 8
+ cosb <To> T ] (38)
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=
]

cosO V dh B cosb <c036 h*> dh

(-p -2 4 £ o
2 , coseo D at F(Z) coseO coseo D ds ot

-+

D cos0
Q
r
cosf 2 BVi o cos6 2
BV cos@o > cos eo + D <VO> cose0 cos e‘o

+

q. /D_\
(sLusinw-BV)5%<—T§>] L

Then Eqs. 38 and 39 can be combined linearly by using an unknown
multiplier, A, to form

M=)\M1+M2=O . . . . . . . . . .

L r
v 0 B r o\ « sin(6 + )
BV_‘ - — —= (s -8,) += |— ch ==~ * 7/
o o [ FZ i D <V0> < : coseo

(39

(40)

whence the following two ordinary differential equations in terms of )

are formulated:

L
cosf A4 dh (o} .
[)\ + { 8) cost D] dc T dt D cosS {:
e} o

r
r (o sin(6 + ¢) _ y cosb
+ D <V > <)\D +ocd cosGo cose > cos 6
I
D

|

o N

a

i (%o ‘ cosf 2 o cos
+ » \§ - AD + BV w056 > cos 9 + T A pysyr D
o . 0 o}
+ BLu siny = BV)] = Q . . . . . . 41
*
e et (e
ds FO co o] ¢ o] cosb
a:—= costG V = AD cos® + BV
A+ - B)cose D
o . . . (42)
From Eq. 42, the following two particular values of A are obtained.
A = + 4. cos@ / _ 2 . cos0 *
| wse. /PTG O @Y
o
o
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By substituting these two values of A back into Eqs. 41 and 42, a set of
ordinary differential equations is formulated as follows. From Eq. 42
with the help of Eq. 43, two sets of curves, ¢t and C” curves, which are
often called characteristic curves, are obtained:

e _l
¢t Lo fee-n 2L nge +0% L 4
- ds ) ) 2 . cos® &k .
¢ - Jecs- 1 v2+ L csiT TRO .G

The characteristic differential equations which apply along these charac~
teristic curves are obtained from Eq. 41 upon substitution of the A ex=
pressions from Eq. 43.

ot 1—3"—'5'—@—'[(1-s)v+/e(s-1)v2 B o peost L% |4

D coseo 2 cose dt
L
+i\1__.___9__ __5_( )+_ sm(6+<1>)
dt D_ cosb 2 f cosf
[e) o Fo
B cosf %
- gV 4+ /B(B~-1) V2 + — (D =—— + h") | cosb cos8
F2 cose
o

if7o - - 2 , B cosf %
+ 3<:70>< RV /B(B 1) v4 + F2 (D ——coseo + h"™) > cos8 cosf

(o]
! 6
+T]1;<T ><Busm¢'-BV+/B(B-1) vZ + i(ncgze +h)>]
(o] l?O

. N 1))

-, 1 cos8 - - _ 2 . B cosb dh
¢ D coso_ [“ & v - /8 DV 7 D s h)]dt

o]

L r .
dv _ 0 B r{’ o sin(0 + 9)
t 4 T D cosé [ 2 (s Sf') +5 <V ><-CA cos®
o o FO o

- - - 2 . B cosf *
gV /B(B 1) V4 + Fz (D cost_ + h") > cos 9 coseo

(o}
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e\ ,
ife - 2 . _8 cosh *
+D<V ><BV+/B(B - 1). V& + 3 ‘(D —~——CO860 + h™) > cosb coseo

0 Fo

q D
L Q . . - - 2 B cosB
+ 'ﬁ<’,i,;'>< BLu siny BV /B(B 1)V +-—2 , (D —— COSG + h ) >—J

FO
.. .. D

These ordinary differential equations so derived will be expressed
in a difference form from which the depth and velocity of flow, h and
V, can be solved orderly, one at a time, on the computer, at the inter~
section of the CT and €~ characteristic curves.

An Explicit Scheme with Specified Intervals

The derivatives in the equations of the characteristic curves, Eqs.
44 and 45, and the characteristic differential equations, Eqs. 46 and 47,
will be replaced by first order differences for use in an explicit scheme
with specified grid intervals, as shown in Figure 4. In the present study,
the grid distance interval, As, is taken as a constant. In order to in-
sure stability of the solution obtained from the explicit finite-differ-
ence equations, the relative value of the time interval, At, and grid
distance interval, As, must satisfy the Courant criterion (Courant et al.,
1952):

At < As - - L L. 48
- 2 cos %
BV + /B(B 1) V¢ + ") (D P + 1n")
Fo o

The specified grid interval is used to assign definite values of sp and

at point P in the s, t~plane (Figure 4) throughout the computation.
Tgus, only two unknowns, the velocity and depth of flow at point P, Vp
and hp, remain to be determined. If the velocity and depth of flow are
known at points A, B, and C (Figure 4), the velocity and depth at points
D and E (or E') can be evaluated by linear interpolation incorporating
with the equations for the characteristic curves, ¢t and C .

The characteristic curves and the characteristic differential equa-
tions, Eqs. 44 through 47, can thus be transformed into the following
explicit finite-difference forms with specified grid intervals. All the
variables with subscripts, ¢SA,*?* €¢B,®?® €¢C,%? ¢¢Dp,*> f¢E,** (or E'),
and “°P°’ used in the following equations denote the corresponding quan=
tities at point A, B, C, D, E (or E'), and P in Figure 4, respectively.

For the CT ~characteristic curve, Egqs. 44 and 46 give

//” 2 8 coseD
Sp = Sp = [BVD + .B(B - 1) VD + ;5-(D ose + h )
° . . . . (49)
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Figure 4. Explicit scheme with specified grid intervals.
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cosb
o
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: o

q D cosf \
L.D 0 R - - 2 8 D *, 0\
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e 2
) _ 2. 8 cos® %
BVD + J/g(B 1) VD + 5 (DD + hD) coseD cose0

° (50)

respectively.

For C™ - characteristic curve, Eqs. 45 and 47 give

s, -s = |8V - /8B-1 V:+E - +h0Y | ae
P E E E 2 E coseo E

Fo
. . . . (51)

1 coseE 2 8 coseE "
D. cosb (1 -8 VE B B(B = 1) VE + —E.(DE cosf + hE) (hP -hE)
E o FO o

L

T r sin(6_ +&_)
[] B8 E [¢] E E
+(V-V)=_____.____.[._(3- )+__<_._><c P U US..... S
P E D0 COSGO F(?; ,E f DE V0 IHZ coseE

D) 8 coseE "
- BVE - B(B = 1) VE + ‘F? (DE m:+ hE) > coseE 00860
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r, 2 8 coseE *
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E o EFq o

St
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q D cosf
LE o) c o . 2 B E . %
+ ————TEDE< >< B u siny =BV, %(s 1)VE+F———2 (D, s, ) )] At
o)

o
e e e e e (52)

H

Equations 51 and 52 are developed only for subcritical flow, in
which point E lies between points B and C (Figure 4a). In the case of
supercritical flow, the C° =characteristic curve has a positive slope
in the s, t=-plane so that point E lies between points A and B, as shown
in Figure 4b. However, Eqs. 51 and 52 are still applicable to the super=-
critical flow case if subscript ¢°E’’ for all variables in Eqs. 51 and
52 is changed to subscript ¢<Et'*>.

In order to solve Egs. 50 and 52 simultaneously for Vp and hp,
all other quantities at points D and E (or E') in the equations must
be evaluated first. Within the same flow region, these quantities such
as at points D and E (or E'), can be expressed in terms of known or
calculated quantities at given grid points such as at points A, B, and
C, by interpolation. In other words, for any given non-closed channel
section, where the geometric elements of channel section, such as ‘A, D,
R, and T, can be defined entirely by the section geometry and the depth
of flow, the velocity of flow and any geometric element of channel sec~
tion anywhere between two grid points, if in the same flow region, can be
evaluated by interpolation. For convenience, the hydraulic depth of flow,
D, is used as a representative geometric element of the channel section
under study. ' :

When grid points A, B, and C utilized in the interpolation of the
values of flow variables at points D and E (or E') are not in the same
flow region, such as in the case of bores which develop between any two
grid points, great care must be given to the formulation of linear inter-
polation or extrapolation formulas which, if derived for flow on the
front side of the bore, should not be expressed in terms of the known
values for flow on the back side of the bore and vice versa. It is
essential that the interpolation or extrapolation formulas for flow
variables at points D and E (or E') be generalized so that they can also
be applied to a situation in which a bore exists in between grid points
A, B, and C. The generalization of interpolation or extrapolation can
be done in the following manner.

Let points 1 and 2 be given and sit in the upstream (left~hand) side
and downstream (right-hand) side, respectively, of point D (Figure 5a),
point E (Figure 5b), and point E' (Figure 5c¢). Points 1 and 2 may or may
not be grid points A and B (Figures 5a and 5¢), or B and C (Figure 5b),
depending upon whether there is a bore or a train of such bores in between.
If all the points 1, D, 2,. and P are in the same flow region in the case
of the CT characteristic curve, then ‘
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Figure 5. Location of characteristic curves.
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2°D_ "2 P At - 2 B __ D
szés1'- sz-s1'+ s -51"[%VD'+ //é(s"1)VD + FZ (DD cose + hD) ]

N € £))

in which‘s1 and so are the coordinates of points 1 and 2, respectively.

With the C~ «characteristic curve, two separate cases must be
examined. In the case of subcritical flow,

cose
2 B E *
SV.E %(B 1)VE + F——-Z (DE ————-c.oseo + hE) <0
(o]

. (54a)

or simply

cosB

1 [ %* ‘ :
VE < Fo DE cos eo + hE L ] . * ° L) ]

(54b)

point E falls between points B and C, as shown in Figure 53b. If points
1 and 2 are again introduced, then

' cose
2 "E 2P At B E
— = ot T BY -/(6-1)V+ (D; +h)]
sy s1 s2 s Sy s1 [ E /Fi E cose

. o« e (55)

In the case of supercritical flow

2 coseE
BVE' - B(B = 1)V, + 2 (DE' cose + hE'> >0
o
. . . (56a)
or simply
§]
1 /// cos B "
VE‘ ?*Fo DE' E;gg;—- + hE' . . . SRR . (56b)

point E' falls between points. A and B, as shown in Figure 5¢c. If points
1 and 2 are again introduced, then
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89781 S2781 . 8278 E° . E' "g2 “E'cosé " E

o
po . . (57)

For convenience, Eqs. 53, 55, and 57 may be expressed in a general form
such as

S,=S 8,5 : cos9, j
2 71 2P At 2 B , i ®

- + —— | BV, #7 %(s-m. +£ (D, + b))
s‘2 84 $,78, 8,78, [: i i i F2 i c0360 i _J

2
o
. . . . (58)

in which the index €¢i*’ for variables s;, Vj, Dy, 04, and hz’ signifies
the corresponding varlables, at points D, E, and E'.. It can readily be
seen from Egqs. 53, 55, and 57 that for 1 = D, E, and E' , Ty = 1,

mg = =1, and Tg' = =1, respectively. Use of Eq. 58 thus simplifies
greatly the computer programming. ’

There are three unknowns, sj, Vi, and Dy, in Eq. 58. To solve Kq.
58 for three unknowns two more equations are needed, i.e.,

S5,=8, VZ-V. D2-Di

2 1 i )
= = . . . ° v, ) . . (59)
sz-s1 V2 V1 D2 D1

The Newton~Raphson Second Method (Moursund and Duris, 1967) can be
applied to Eqs. 58 and 59 for simultaneous solution of three unknowns
8i, Vi, and D4, which may be expressed in terms of supposedly known
values at points 1 and 2.

After the interpolated quantities at points D and E (or E'), such
as sp and sg (or sg'), Vp and Vg (or Vg'), and Dy and Dg (or Dgt) are
evaluated, the values of other geometric elements of the channel section
at points D and E (or E') can be calculated from the geometry of the
section and the values of Dy and Dg (or Dgt). Other variables such as
rainfall intensities, rp and rg (or rg'), the infiltration rates, iy
and i (or ipr'), the lateral inflow rates from the downstream ends of
the overland flow parts, qip and qpg (or qLE')= the terminal velocities
of raindrops A and Ag (gr_ Ag'), and overpressure heads due to the
raindrop impact, hD and hg (or hgpt ), can be evaluated from the known
functions, at points sp and sg (or sgt), respectively. Substituting all
known quantities at points D and E (or E') .into Egs. 50 and 52 and then
solving Eqs. 50 and 52 simultaneously yields the values of Vp and hp.
Because Egs. 50 and 52 are linear in Vp and hp, the solutions are straight-
forward.
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The Procedures of Computation

Mathematical expression of
cross profile for roadway

The quadratic equation,

- 2 .
z = C1x + sz + 03 . . . . . . . . . (60)

is the basic equation in formulating the cross profile of the roadway,

as shown in Figure 6. Here 2z and- x are the vertical and horizontal
coordinates, respectively. From the coordinates of any three points on
the road surface the coefficients of the equation, Cq, Cy, and C3 can be
determined. Furthermore, Eq. 60 can be used to express s=-coordinate
along the roadway profile with s = 0 corresponding to x = 0 and z = 0
because the following relationship exists between x and s coordinates.

v/(dz/dx)2 +1 dx = / 4c222 + 4C Cox + C2 + 1 dx
1 172 2

S:
2C.x + C
R W /N 2
401 .4C1x + 4C1czx + C2 + 1

1 [ ana /2 2,2 2

+ A /Ei. loge \SG%x + 4C1C2 + 4 C1 /,4C1x + 4C1C2x + C2 + 1
1
C

—2 /241 -

4C1 2

log  (4c.c, + 47c2 /c2 + 1
e \461% 176

4/5%_
N (1)

Given the coordinate of s, the coordinate of x can be calculated from

Eq. 61 and vice versa. The Newton-Raphson method may be used for numeri-
cal solution of Eq. 61 for x with s known. Note that the transforma=-
tion of coordinate systems from s to x is needed because the character-

istic difference equations, Eqs. 50 and 52, are solved on the s, t-plane,
but not on the x, t=plane.

For solving Eqs. 50 and 52, the bed slope, S, that changes along
the cross profile of the roadway must be evaluated at points D and E
(or E') (Figures 4 and 5). The bed slope at any point on the roadway .is

= = 1 -1.4_-2— '
S = gind sin <%an ax > . . . . . .« . (62a)

or
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Figure 6. Typical cross (or crown) slope of roadway.

37




S = sin [tam-1 (201x + CZ)] . . . .. . (621>

Arrangement of overland flow and
gutter flow sections

For delineating the entire f£low region on the roadway between two
adjacent drainage inlets, the flow lines that enter the inlets should be
known. Unfortunately there is no such information asscciated with the
hydraulic (one-dimensional) approach., Since a sheet flow has a small
depth, a line starting at the inlet perpendicular to ¢he contour lines
is believed to be the closest to the actual flow line‘one can guess.
Therefore, the entire flow region becomes a plane flow net consisting of
contour lines and flow lines, as depicted in area HIJK of Figure 7.

Along a flow line of overland flow, say curve AB in Figure 7, the
maximum bed gradient at any point, P, is tangent to curve AB, as shown
by arrow PT in Figure 7, and is the vector summation of the bed gradient
in the gutter direction, PC, and the bed gradient of the roadway crown;
PR. Similarly the resultant velocity along AB can be considered as the
vector summation of two velocity components: one along the crown of the
roadway and the other in the direction of gutter flow. Both velocity
components at the upstream end of overland flow must be zero (i.e.,
boundary conditions). In the true simulation of overland flow, the
resultant velocity along the flow line should be considered. However,
1f flow lines, such as shown in area HIJK of Figure 7, are curvilinear,
the computation should proceed along the curvilinear flow lines that are
unfortunately very difficult, if not impossible, to be traced. Instead
of tracing the flow line and having the resultant velocity computed along
the flow line, one can simply compute the velocity component along the
crown of the roadway, which is in the direction perpendicular to the
gutter flow. This simplification in the computation is justified because
the velocity component in parallel to gutter flow is equal for a line
connecting the same crown slope and is equivalent to making the assump=-
tion that the true flow region HIJK is transformed into the conceptual
rectangular flow region H'I'JK. Thus, only the velocity component along
the cross profile of the roadway is routed.

The lateral inflow rate, -q,, per unit length of the gutter is
actually equal to the overland-flow discharge per unit width along flow
line AB at point B on the internal boundary multiplied by the cosine of
the angle ¢ that the direction of overland flow at point B makes with
the line perpendicular to the gutter flow (Figure 2). This lateral in-
flow rate, q;, is of the same magnitude as that calculated from overland
flow along line 'A'B at the same point B on the internal boundary.
Therefore, routing the overland flow in the conceptual area H'I'JXK with
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. the velocity component perpendicular to the channel flow is tantamount
to routing it in the actual area HIJK with the resultant velocity along
the flow line. The validity and practical applications of the present
technique routing storm water over the conceptual rectangular area H'I'JK
can only be examined by comparing the computed results with field data.

Given the conceptual rectangular watershed area, the routing arrange-
ment of overland flow and channel flow can proceed as follows. As shown
i Figure 8, let the value of N indicate the location of the given sec-
tion associated with both overland flow and gutter flow, that of X the
location of the given grid point, and that of T the time level. For
example, N = 1 is the overland flow section 1 at the upstream end of
gutter flow, N = NN is the overland flow section NN at the downstream
end of gutter flow, and N = NN + 1 is the gutter flow itself. The grid
points associated with K = 1 correspond to those at: the upstream ends
of both overland flow and gutter flow. The values of KN and NN ‘represent
the total numbers of grid points in the overland-flow and gutter-flow
parts, respectively. Therefore, any given variable with a given grid
point (N, K, T) will be specifically referred to that variable at the
N=th section, K=-th grid point, and T=th time level. Note that correspond=-
ing to each grid point of gutter flow, there is a section of overland
flow. Consequently there are a total of ¢*NN’’ number of overland flow
sections. The number of the grid points, KN, in the cverland~flow part
changes with the location of the moving intermal boundary between overland
flow and channel flow.with the last grid point, KN, being designated as
the first one to the right of the internal boundary. :

The distance interval between two grid points in the overland-flow
part is denoted by Asrg, as shown in Figure 8, and that in the channel=-
flow part by Asgy. For convenience, the distance interval between grid
points KN-1 and KN in the overland~flow part does not need to be limited
to Asgg.

Elementary drainage area for curved roadway

To apply the same one-dimensional numerical model formulated in the
previous section for runoff on the straight roadway to the case on the
curved roadway requires only a slight modification on the elementary
drainage area at each grid point. Note that for straight roadway, the
elementary drainage area, AA, (= Asgg x Asgy), as shown in Figure 8 is
constant everywhere on the roadway, provided that the distance intervals,
Asgpg and Asgy, taken in both overland and gutter flow directions are
invariant. However, this is not always the case on a curved roadway
which is considered as a composition of several sections .of different
curvatures with straight longitudinal slopes. There are two alternative
ways by which runoff on the curved roadway can be modeled. One is to
keep AA, constant by adjusting the Aspg and Asgy lengths and the other,
vice versa. It seems more difficult to handle a problem with varying
Aspg and Asgp in the curvilinear coordinate system (sgg, sgy) associated
with the curved roadway than that with varying AA, for specified Asgg and
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ASGU. Therefore, the latter method is used to find a correction factor
for the variation in AA, with specified ASRS and ASGU on the curved
roadway. The value of the correction factor so formulated should depend
on the coordinates of a grid point in question and thus apply only to
those quantities defined with reference to AA, such as the rainfall
intensity, r, and the infiltration rate, i. c

~ Consider an elementary drainage area, AA, (shaded) as shown in Figure
9, on the curved roadway. If the inner and outer radii of curvature for
AA are assigned rq and rp, respectively, then

2 2

AA=%(r2-r1) N 5

in which 6 is the central angle in radians subtended by Asgys OF

As X
_ GU i
6 = = . . . . . . . . . . . (64)
C » : ,

in which r is the radius of curvature for the gutter flow length, L.j.
Geometricafly on the average, :

As

- . RS . N
r, =1, +'“rs s + 2 . . . . . . . . (65)
As Co : .
_ _ - RS
r, =r, + LrS s 5 . . . . . . T (66)

in which Lyg is the overland flow length and s is the overland-flow
cooxrdinate of the center of AA. Substituting Eqs. 64, 65, and 66
into Eq. 63 yields '

' Lrs -8 ' R
AA = AAO 1 + '—_r——_— ° . . . » ° ° ° (67)
Cc .
or
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XAZ—‘. V e . ° ° ' ° L. 0»
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The ratio of the elementary drainage areas, AA on the curved road-
way to AA, on the straight roadway is indeed a correction factor, Eq. 68,
which will be used to multiply all the terms containing r and i in
Eqs. 50 and 52. The correction factor becomes unity as an overland-
flow grid point approaches to the gutter (s = Lyg). Furthermore, no
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Figure 9,

An elementary drainage area of the curved roadway,
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contradiction seems to be induced by multiplying the correction factor
to the r and i terms even in the case of the straight roadway, for
the correction factor automatically becomes unity as r. approaches to
infinity. 1In application, however, the r, value in Eq. 68 needs to
be determined in advance.

The minimum permissible radius of curvature, r., in ft.is determined
by the highway design speed, U, in mph, and the maximum superelevation,
e, in ft per ft of roadway width of the curved roadway as follows
(Highway. Research Board, 1957; Noble 1960):

0.0670% '
o= oo 7 . . . . . . . . . . (69)
in which f is the side friction (cornering ratio) between tires and road
surface. American Association of State Highway Officials (AASHO, 1973)
has specified that (1) maximum superelevation rates of 0.04 to 0.06 are
commonly used on arterial streets, (2) . on freeways maximum superelevation
rates of 0.06 to 0.08 usually apply, and (3) maximum superelevation rates
of 0.10 to 0.12 are applicable for those highways if'snow’and‘ice are not
factors. Highway curve design data for assumed maximum superelevations
of 0.04, 0.06, 0.08, 0.10, and 0.12 can be found in AASHO (1973, 1965).
A friction of f = 0.10 is a conservative value to be used for main-line
highway design (Moyer, 1934). ?

Reference (or normalizingz) quantities

The angle of inclination of the gutter bottom is taken as the
reference angle of inclination, 6,. Therefore the reference slope,
So» is the gutter slope, defined as sin®_ . The reference length, L,
can be either the length of gutter f£low or that of overland flow, or
a combination thereof. The discharge at the downstream end of gutter
flow at the equilibrium stage is considered as the reference discharge,
Qos corresponding to the referemce rainfall intemsity, r,. That is

Q, = rB =AYV c e e e e e e e e (70)

in which B 1is the total projected area of the runoff surface on the
horizontal plane, A, is the reference cross-sectional area of flow, and
V, is the reference velocity of flow. The value of A, cannot be
determined unless Vg, is known and vice versa. Thus, both quantities
can only be calculated by a trial and error as follows. Assuming that
water with the reference discharge Qy flows umiformly in the gutter with
the reference slope S,, one obtains from Eq. 18

2
S = ——-——fo VO o
o SgRo |

. . (71)
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in which f , is the reference fricﬁion coefficient and R, is the refer-
ence hydraulic radius.  Combination of Eqs. 70 and 71 yields

_ /8
Q = J?%AO /RS, N ¢ 73

(o) '

Equation 72 can be solved for the reference hydraulic depth, Dg, hecause
Ao and Rp are all functions of D, and the value of [, can be calculated
by using Eq. 19, 20, or 21. For simplicity, the reference gutter flow
with Qg is conceptually treated as 1-ft rectangular channel flow in the
present analysis. Therefore, the reference top width, T,, simply becomes
unity and Ay = Ry = Dg. Solution of Eq. 72 needs an iteration method
such as used by Chen and Chow (1968). After D, is determined, the
corresponding value of A,, and hence V,, can be obtained from the geo-
metric relationship of the 1-ft rectangular channel and Eq. 70, respec~
tively. l

The reference Froude number is defined as

v
o

F o= G =
0]
w’gDo cosGO/B

Assuming initial conditions

Immediate difficulty arises when the initial conditions, Egs. 22
and 23, in the form of difference scheme are used to start the compu=
tation. If the velocity and depth of flow are all zero everywhere at the
initial stage, the method of characteristics using an explicit scheme
with specified grid intervals fails immediately at the subsequent time
level. Therefore, it appears necessary for each problem to assume an
appropriate initial condition.

In the case of stationary uniform rainfall (i.e., equivalent to have
an infinite storm velocity), assume that the initial depth of flow on the
roadway, h,g, is small, say one fifth of the flow depth at the second grid
point on the roadway at the equilibrium stage or the roughness size, k,
of the ground surface, whichever is smaller. The corresponding time
for this condition is

hrs
tS = r . L] * - L] » . - * L] L] (74)

When the top width of gutter flow becomes zero, an immediate failure of
computation by use of Eqs. 50 and 52 will result unless an initial depth
higher than hyg is assumed in the gutter. Let us assume the depth of
gutter flow, hgs’ to be’
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hgs = 2hrS . . . . . . . . . . . (75)

Then the non=~zero top'width of gutter flow can be cbtained accordingly
at the initial state.

The initial velocity of flow, Vg, at any point on a roadway assumed
to be that of the uniform flow with the corresponding bed slope, S,
roughness size, k, and flow depth, hyg or h,g, -at the point under con-
sideration. Because the bed slope of the roadway steepens as it approaches
the point where overland flow meets with gutter flow (i.e., the internal
boundary), the initial velocity of flow so computed increases considerably
with the cross profile of the roadway.

For moving rainstorms, the initial conditions must be set up
differently from that of statiomary rainstorms, as described above. The
storm front may move in any direction with a storm velocity, W, which may
differ considerably, depending upon physiographical and hydrometeorolog=
ical factors. It is possible that the storm moves so slowly that the
wavefront produced on the dry bed outraces the storm front. Although
the assumed initial conditions, if generalized, can be applied to a
storm moving in any direction, only those related to storms moving in
the same direction as those of overland flow and gutter flow, or in the
opposite direction, are treated herein. When the roadway is initially
dry and a storm just enters the upstream end (i.e., highway watershed
divide), the amount of water coming from rainfall and then staying on
the ground around the upsircam end is too little to be utilized as a
starting condition of the subsequent computation. Furthermore, there
is no way to know beforehand how this little amount of water behaves
around the upstream end of the ground surface. In fact, it is part of
the solution being sought. In order for the present method to be valid
in this case, it appears that the assumption of a non-zero depth of water
extending over at least the two uppermost grid points is necessary for
the numerical computation to start with. An alternative way to circum=
vent this starting problem is to subdivide the distance interval between
the two uppermost grid points into finer distance intervals and then the
same assumption of a non-zero depth of water applied to the uppermost,
finer distance interval. Results obtained from the latter approach are
believed to be more accurate than those obtained from the former approach;
however, in view of a considerable increase in the computer time with
the latter approach, the uppermost distance interval is not subdivided
herein.

The initial location of the stormfront, say at the second grid point
(i.e., K= 2 in Figure 8) from the upstream end, will be assumed and
the corresponding time for the stormfront to reach that point will be
computed. Similarly the initial location of the wavefront, say halfway
between the second and the third grid points, will also be assumed and
the corresponding depth and velocity of flow will be computed on the
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assumption that they are uniform throughout the wavefront and the volume
of water retained on the ground surface is equal to that of rainwater
falling on the ground surface during that period of the initial time.
Hopefully, the depth and velocity of flow so assumed at the upstream end
(i.e., K= 1 in Figure 8), at the second grid point, and at the wave-
front will adjust themselves in the computations at subsequent time
levels. As shown by Chu (1973), if the location of the wavefront
assumed is too far downstream, the wavefront will move slightly upstream
to make automatic adjustments of its location in the subsequent computa=
tions. These are the initial conditions assumed for a storm moving in
the direction of overland flow.

The number of initial conditions to be assumed for a storm moving
in the direction of gutter flow is more than that in the direction of
overland flow. As soon as a storm enters the roadway in the direction
of gutter flow, immediately a combined overland and gutter flow occurs
at the upstream end of the gutter. Both locations of the stormfront
and the wavefront of gutter flow can be assumed as those for a storm
moving in the direction of overland flow, but the depth and velocity of
flow in the overland-flow part at different sections of gutter flow for
the initfal time period must be computed accordingly. It appears that
the initial depth of flow which is assumed uniform throughout the wave-
front in the gutter needs to be assumed larger than that at the internal
boundary, preferably three times greater, in order to proceed smoothly
in subsequent computations.

When a storm is moving in the opposite direction to the flow, either
overland flow or gutter flow, (i.e., from the downstream end to the
upstream end), no advancing wavefront exists and the initial conditions
can be assumed as those for a stationary rainstorm extending over a
certain distance interval from the downstream end to the assumed storm-
front.

Evaluation of the friction coefficient

Equation 19, 20, or 21, as depicted in Figure 3, is used to evalu-
ate the friction coefficient, f. However, if the depth of flow, h,
or hydraulic radius, R, 1s very small with almost the same order of
magnitude as the roughness size, k, an unrealistically large value of the
friction coefficient, f , may result from Eq. 19, 20, or 21. To im=~
prove this poor evaluation of f, Chen and Chow (1968) proposed the
friction slope, S, at the initial stage to be evaluated from the energy
equation formulated at each grid point. As shown in Figure 10, the head
loss, hpe due to friction between points D and E (or E') .is assumed
equal to S{ Aspp (or Sp Aspg'), in which Aspp and Aspgr are the chanmel
distances between points D and E and between points D and E',
respectively. Thus
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in which ap and op (or op!) are the energy correction factors at
points D and E (or E'), respectively. The theoretical evaluation of
the energy correction factor for laminar and turbulent flow is appended
to this report (Appendix 1).

A few preliminary computer experiments revealed that use of Eq.
76a or 76b alone resulted in the erroneous longitudinal velocity distri-
bution which changes only slightly, if not at all, with time. In view
of this problem, it appears that Eq. 76 can only be used whenever Eq.
19, 20, or 21 fails to compute the realistic f value. In effect Eq. 76
plays only a role of transition in the evaluation of the friction slope,
Sp , or friction coefficient, f. Chen and Chow (1968) compared the
value of S, computed from Eq. 18 with that from Eq. 76 and selected
the smaller” one. However, if Eq. 76 simply plays a role of transition
in the evaluation of S from one value to another computed by using Eq.
19, 20, or 21, both equations should give about the same computed value
of Sp or f at the equilibrium state where the depth of flow is much
higher, possibly many times higher, than the roughness size. For most
cases of the problems investigated, use of Eq. 76 happened both at the
initial stage of the computation and at the final stage of receding flow
after rain stops. Because the initial conditions formulated at the
beginning of the computation are nothing but assumptions, as already
described before, the f value estimated by use of Eq. 19, 20, or 21 at
the beginning stage of the computation was so unrealistic that the depth
and velocity computed at each grid point by means of Eqs. 50 and 52
easily became too low or too high. If this undesirable situation had
developed, the computation at next time level could have immediately
broken down unless some kind of bypassing alternatives were built into
the computer program. Use of Eq. 76 might be regarded as one of such
alternatives. There were some other instances, in which Chen and Chow’s
(1968) scheme might also fail when the S value determined from Eq. 76
is always smaller than that obtained from Eq. 18, even at the equilibrium
state. This in a sense implies another undesirable situation in which
Eq. 76 has been used alone all the time in the evaluation of the Sf’ A
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few exploratory computer experiments indicated that in some cases,
especially for extensively long overland flow consisting of combined
regimes of flow resistance such as partially laminar upstream and partially
turbulent downstream, the flow would probably never reach the equilibrium
state if only Eq. 76 was used in the computation. A compromise between
the use of Eq. 18 and that of Eq. 76 must thus be in order. The role of
transition played by Eq. 76 suggests that taking the average .value of §

or f computed by both equations at each time level may be a good approxi=
mation for practical purposes {Chu, 1973).

Although there are few more technical difficulties in the computation
than just described above in connection with the present numerical schemne,
similar alternatives were used to overcome such difficulties, wherever
they occurred. 1In some problems, for example, with low rainfall intemnsity
and steep slope, the depth of flow throughout the chammel remains very
small with an order of magnitude of the roughness size, k, or less even
at the equilibrium state. In this case, additional judicious assumptions
have to be made because the evaluation of Se or f by using the method, as
described above, still produces unrealistic®values. Physically, when the
depth of flow becomes smaller than the roughness size, the water movement
around protruded roughness particles on the ground surface must be slow,
in a way analogous to porous media flow regardless of whether or not rain-
drops are impinging on the water surface. Therefore, one may assume that
there exists a minimum depth below which the flow is so slow (i.e.,
laminar) that the laminar flow equation (i.e., a combination of Eqs. 18
and 21) applies. The minimum depth may change with channel slope and
rainfall intensity, but ifor simplicity it is assumed constant herein.

An analysis of Woo and Brater’s (1961) data reveals that the minimum
depth approaches asymptotically twice the roughness size with the increase
in the bed slope within their slope range tested. The value of f
corresponding to the minimum depth is computed from Eq. 19 for R/k = 2

to be about 0.115, as indicated in Figure 3, and the value of C in Eq. 21
may be evaluated as follows. ‘

Let the value of C depend on the bed slope, S, the rainfall
intensity, r, and the roughness size, k. Then for uniform laminar flow
with depth less than the minimum depth, say ¢k, where ¢ is assumed
constant [i.e., € = 2 in Chu’s (1973) study], the Darcy-Weisbach equation,
Eq. 18, is expressed as

2
e (77

S = 82R . . . . . . . e . . .
which upon combination with Eq. 21 reduces to

_ Cvwv '
S = 5 . . . . . . . . . . . (78)

8gR
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However, when the depth of flow increases and the hydraulic radius exceeds
ek, the flow under study can become either laminar or turbulent. Con-
sequently, one may assume that at R = ek, both Eqs. 19 and 21 satisfy

Eq. 77 as follows:

S = —-555L75 ... .. (79)
" 8g(ek)
2
S = 1 v, .. .. e

8g[21og(2¢e) + 1.74]2

Eliminating V from Eqs. 79 and 80 yields

1/2

3
¢ = —1885(ck)7] R €YD
v[2log(2e) + 1.74]

This is the formula for C, the value of which is assumed to be greater
than the theoretical 24 and varies with S and k, as shown in Figure 11
for ¢ = 2. Equation 81 for ¢ = 2 and k = 0.00333 ft is also plotted in
Figure 11 and compared with Woo and Brater’s (1961) result. It is not
surprising to see that they deviate significantly from each other, for
the value of ¢ in Woo and Brater’s data varies from .4 for small S to

2 for large S. No way of improving the expression of Eq. 81 was
discovered unless one knows the variation of ¢ with S and k a priori.
Despite the difficulty in the analytical expression of the C wvalue,
Eq. 81 was used in Chu’s (1973) study as a first-order approximation.
Apparently there is a question regarding the general applicability of
Eq. 81 which merits a few comments in the following.

To make use of Eq. 81 for assumed € = 2, one has to know the
roughness height, k, for a surface under investigation. However, the
k value for a given surface is the hardest to determine. Usually most
kinds of material determined from experiments have a wide range of the
k value. For example, the k value for concrete varies from 0.0015 to
0.0100 £t (Chow, 1959). Because the k value for a glued-sand surface
used in Woo and Brater’s (1961) experiments lies within the range of
concrete, the C values determined from their experimental data may be
used as a basis for the computation of sheet flows over concrete or
bituminous surfaces without further determining the k value. This
approach seems to be more acceptable than use of Eq. 81 in the
engineering practice, for a highway engineer does not need to measure
or determine the roughness height for concrete or other kinds of
material.

In general, the following relationship exits between the C value
and bed slope, S, for a given surface (Chen, 1975a):
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C = aS . . . . . . . . . . . (82)

in which a and b are parameters, the values of which seem to vary with

k and r, the rainfall intensity, if it is under rain.r A further analysis
of Woo and Brater’s (1961) experimental data resulted in approximately

a= 235-and b = 0.296 for a glued-sand surface which will be assumed to
have the same roughness height as a concrete or bituminous surface in the
present study. For use in the computation of overland flow on the side-
slope, Chen (1975a) has experimentally determined a = 510,000 and b =
0.662 for natural turf surfaces. Thus, Eq. 82 assigned with the preceding
values of a and b for concrete and turf surfaces is used throughout this
runoff modeling study.

Given the expression of C, the velocity V in the shallow:laminar
flow range can now be expressed by substituting Eq. 82 into Eq. 78 as

v = 88 p2g(1-b) e e e e e e e e, (83)
av ’ .

which shows an interesting result because the values of the exponent,

(1 =b), of S in Eq. 83, 0.704 for concrete and 0.338 for turf, are less
than theoretical unity. In the present study, the laminar flow using

Eq. 83 is assumed for R < ek, in which the value of ¢ may be determined
by best fitting the computed hydrographs to the measured ones obtained
from field data.

Numerical formulation of external and
internal boundary conditions

Upstream boundary conditions. Equation 2 in dimensionless form
using normalized variables such as defined .in Eq. 35 is

LTr - L -
ég-+ CLY o (r = 1) T cos® + 9

Q O
9s T3t AV T cos6_ 91, © (84)
[o N o] (o) (o]

in which asterisk subscript used to represent normalization was already
dropped from all the variables for brevity and cos§ is the average value
of cos§ between two grid points under consideration. Consider two
uppermost grid points as shown in Figure 12a. The partial derivatives
in Eq. 84 can be expressed by the following finite-differences

. . . . . (85)

59 _ 1 ("' % + u2'v2" %1V
ds 2 As As
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ot 2

. . . . . . (86)

A _ 1 <AP;iU1 . A~Ui;Atm)

in which all subscripts refer to the grid points defined in Flgure 12a.,
The upstream boundary condition is

&% Q

V = e—— = u

P AP A_P" . . . . . . s T e .

(87)

in which Q, is the carry-over discharge, if any, from the upstream end.

Specifically, for overland flow, Q, = 0. Replacing the partial deriva-

tives in Eq. 84 by the correspondlng finite-differences, Eqs. 85 and 86,
yields

- - . At . .
Ap = Ayy T Ay " Ay T e BuaVume T AusVus T % T AurVor)

LOTOrO - m T LO -
+ 2At AV (r - 1) T cosd + T eos6 9L
[o e} o (o]

. . .' . . . (88)

in which
r = (rU1 + o + T3 + fP)/é . . . . . . . (89)
1= (i +iy, +igy +1)/4 B € 1)
T= (Ty + Ty + TUB)/S. R ¢
cosf = _(coseU1 + coseU2 + cosGU3 + cosep)/4,.. . . . (92)
U= Gy Fagp gy p/h - - e e e 09

Specifically, for overland flow, where Q, = 0,.VP_= 0, aL = 0, and

T = TU1 =Ty = TU3 = T, Eq. 88 reduces to
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_ _ . bt “
Ap = Ayt T App " Ay Tz Vi Tt AysVyy)

LoTor0 - . e
+ 2At —A?,—;— (r = i) T cosb . . ) o . ° (94)

then thé depth of flow, hP’ can be computed from
AocoseO ‘
= P I el . A
hP AP Do <056 . . . . . < e e . {95}

In the gutter, the flow depth, hp, must be computed simultaneously
with the corresponding overland-flow profile.' The procedure of this
computation will be discussed in detail in ‘the section on ¢‘Internal
boundary condi:ivns.®?

Downstream boundary conditions. The downstream boundary conditions
at iniet depend on the flow conditions, viz., whether the flow is super-
critical or subcritical.

In the case of supercritical flow, both points D and E' of ct -
and C° =chavacteristic curves fall inside the flow region, as shown in
Figure 4b (i.e., to the left of the downstream end of gutter flow).
Therefore, no boundazry nondition is needed to be specified and the veloc-
ity and depth of flow at .Lie downstream end point P (Figure 12b), Vp and
hp, can be obtained by treating point P as an interior grid point.

For subcritical flow, because point E of C” =characteristic curve,
falls outside the flow region, as shown in Figure 4a, finite-difference
equations along C~ =characteristic curve, Egqs. 531 and 52, cannot be
used. Water flowing into the inlet may be regarded as that of free over-
fall flow and the boundary condition there is assumed as a critical flow
condition, Eq. 26, or in terms of dimensionless Vp and hp as

V. .
Fo- 3 =1 T3

o coseP %
DP cos6 + hP
o

This is the boundary condition at the inlet for subcritical flow. Equa-=
tion 96 has two unknowns, Vp and hp (or Dp) which can only be solved
for by using another equation, either the C% =-characteristic difference
equation, Eq. 50, or the finite-difference equation of continuity. Be-
cause of the intrinsic difficulty in evaluating the friction slope in-
cluded in Eq. 50, as mentioned.previously, ‘it was decided to -use the

finite-difference equation of continuity which is formulated, -in refer=
ence to Figure 12b, as follows:
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Bp = Apy Ayt Ay G (Vs ALV - ApsVps * ApVp)

+ 2At A (r - 1) T cosb + T cosb qL]
00 _ ) 0

T (97)

in which all subscripts refer to the grid points defined in Figure 12b;
and T, 1, T cosf, and qL are computed by equations similar to Egs.

89, 90, 91, 92, and 93, respectively, except that subscripts ¢<U1,?’?
€¢y2,?? and €€U3’’ for all variables in Eqs., 89 through 94 must.be
changed to subscripts €*D1,?? €¢D2,”* and “°‘D3,’’ respectively. Solving
Eqs. 96 and 97 simultaneously for Vp and Dp requires the internal
boundary condition between overland flow and channel flow at the inlet
because the cross-sectional area of flow, Ap, varies with the location of
the internal boundary and can be computed by the Newton-~Raphson Second
Method.

The calculation of the carry-over flow. There are two types of
storm inlet on the highway: one 1s called grate inlet and the other,
curb~opening (or side-opening). Each type can be with or without gutter
depression.

For the grate inlet, the carry-over flow may occur in three ways:

1. Flow past the inlet between the curb and the first slot, qq.
2. Flow outside the last siot, qs.
3. Carry=over across the grate itself.

Although from the model studies in the laboratory, Li, Geyer, and
Benton (1951) derived the minimum length of grate inlet required to trap
the central portion of the flow, the minimum length of grate inlet required
to trap the outside portion of flow with or without gutter depression,
and carry-over flow rates, q; and qp, it has been found that the derived
equations are not valid outside of their experimental conditions. The
complicated flow conditions at the inlet area has so far prevented the
development of a sound analytical method to compute inlet efficiencies.

For simplicity, the inlet will be assumed herein to be operated at 100
percent efficiency without further determining the carry-over flow rates.

The calculation of the carry-over flow for the curb-opening type
inlet is not available at present (Li, Sortegerg, and Geyer, 1951).

Internal boundary c¢onditions. Equations 27 and 28 can be written
in a dimensionless form by using the normalized variables defined in Eq.
35 and
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E¢ = E/V,, By =h cosé (D R R

After dropping asterisk subscript, normalized Eqs. 27 and 28 become

€

AL - E) = AV - B) R CT)
Ry - Aghy - 1/2
=V + ‘ - I B 1 <AL R cos 6 +h >]
R AL AR [:ngALAR , AL AR coszeo~ o
N 1010

Equatieons 99 and 100 are the internal boundary conditions which:will be
incorporated with three other equations for solutions of five unknowns,
A, Vi, Ag, Vg, and g.‘ |

For convenience, the computation for obtaihing the discontinuity
solution by using Eqs. 99 and 100 can proceed in two steps (Chen and
Chu, 1973): One is at the inception of a discontinuity and the other is
during its propagation. The computation procedures for the two steps are
somewhat different and the former is more difficult than the latter.

1. Generation of a discontinuity. Consider that previously (i.e.,
at a time level t) there is no discontinuity and a discontinuity suddenly
occurs at time level (t + At) between two grid points A and B, as shown
in Figure 13. ' ' '

Whether or not a discontinuity occurs between two grid points, A
and B, at any time level requires a test of Eq. 100 at each grid point
with the help of extrapolation formulas extended from the adjacent grid
points of both sides. In addition to Eqs. 99 and 100, four lipear
extrapolation formulas such as formulated by Chen and Chow (1968) are
needed in the case of occurrence of a discontinuity for solution of six
unknowns: Ay, .V, AR, VR, £, and Sy, Where sjy is the location of the
discontinuity. In order to satisfy Eq. 100, VL must be. greater than
VR' This condition for Eq, 100 in turn leads to the inequality that

A > V L4 5 0- 7. .k L] L] - . . . * (101)

which should be satisfied if there is a dlscontlnulty between two grid
points, A and B.

With Eq. 100 and four extrapolatibn,formulas, an iteration procedure
such as the Newton-Raphson Second Method can be developed to locate
the discontinuity, S1» between points A and B. After Sy» AL (or hL),
Vs Ag (or hR), and VR are determined, the propagation velocity, g , can
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Figure 14. Propagation of a discontinuity.
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be. computed by means of Eq. 99. Other variables such as ﬁL and ﬁR are
evaluated from channel geometric relationships. As a final check, the
solutions so obtained should satisfy another set of inequalities, Egs.

29 and 30 in a dimensionless form (for Vj, > Vg > & and Ap < Ag)

or Eqs. 32 and 33 in a dimensionless form (for & > v, > VR - and

Ar, > Ag); otherwise, there would be no discontinuity between grid points
A and B.. -

2. Propagation of a discontinuity. To find the new location of the
discontinuity, sj, as shown in Figure 14, the conjugate depths, hy and by,
and velocities, Vj and VR, of the discontinuity, and the propagation
velocity of the discontinuity, &, at time level (t + At) from the previous
ones at time level t seems relatively easy. The new location, sy, is
related to the previous one, sj by

|

SJ = SJ + EAt <. N . . . . . . . o (102)

in which At is the time increment adopted in the computation at interior
points and cannot be taken to be greater than the Courant criterion. Once
the new location of the discontinuity-is determined, the new values of §&,
Vi,» Vgs hy, and hp are computed by using the two discontinuity equations,
Eqs. 99 and 100, and three appropriate characteristic difference equa-
tions formulated along the corresponding characteristic curves for each
of the two adjacent gradually varied flow regions from the point of
discontinuity. Because there are only five unknowns to be determined,

two characteristic difference equations from one flow region and only

one characteristic difference equation from the other flow region are
sufficient for unique solution. The flow region that has only one
characteristic difference equation can be determined from inequalities,
Eqs. 31 and 34, for two different cases.

In the case of A; < Ag and V> Vg > &, Eqs. 29, 30, and 31 in
a dimensionless form are:

“l

. 1 cosB *
VL gE > J// L cose + hL ‘. . . . . e (103)

: 1 cosd ;
VR - g < §- /// c056 hR o . . . . . (104)

b

and

1 cose
R-F //rDR o5 6 + h . . . . o e (105)
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respectively. From the expressions for ¢t - and C~ -characteristic

curves (for B = 1) in the flow regions “‘L?’ and ‘*‘R,’’ and the inequality,
Ei' 105, it can readily be seen that there are two.characteristic curves,
G and Cy, , in flow region °‘L,”’ but only one characteristic curve, Cﬁ R
in flow region “‘R,”>? as shown in Figure 14a. Therefore, the character=
istic difference equation along Cﬁ in flow region ¢‘R*? is not needed

for the computation of the discontinuity in this case (Figure 14a).

In the case of Ap > AR and £ > V; > Vg, Egs. 32, 33, and 34
in a dimensionless form are:

: 1 cosf *

£ VL < P /DL P + hL . . . . . . (106)
o (o]

. 1 cos® % ‘

3 VR > Fo ﬁR E?é-e—o— + l’LR . . R . . R (107)

and

1 cosé %
> VR Fo ¢//DR coseo + hR . . . . . . (108)

respectively. Again, from the expressions for ¢t - and C” -characteristic
curves and the inequality, Eq. 108, it can be shown that the character-
istic difference equation along Cﬂ in flow region “‘L’’ is not required
in this case (Figure 14b).

The preceding criteria for the selection of three characteristic
difference equations for use in the computation of a discontinuity are
believed to be unique because they do not depend on the direction of the
velocities, Vj and VR, as well as the states of flow in regions €‘L’’
and ‘‘R.’> 1In other words, a discontinuity may occur and propagate (or
disappear), regardless of subcritical or supercritical flow in regions
€¢L°° and “°R,”> or a combination thereof, as long as the required condi-
tions for different cases, as stated above, are satisfied.

A good example of the method for computing the discontinuity, as
described above, is an advancing wave on the dry surface due to a moving
rainstorm. When a moving rainstorm enters the upstream end with relative-
ly small velocity, the water falling on the ground forms an advancing wave
moving down the slope on the dry surface. In order for the preceding
method to be valid, the singularity in the discontinuity equation, Eq.
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100, where is equal to.zero hecause of the dry surface, has led

to. the assumptfion that the right-hand side of the discontinuity (i.e.,

on the dry surface) has a very small depth with the order of magnitude

of the roughness size, k, or less. Regardless of how small is assuned,
Eq. 102 used to locate the advancing wavefront should, remain valid if the
previous location, sj, is correct. Unfortumately, because the initial
conditions of flow and hence the initial location of the wavefront were
assumed, as mentioned previously, use of Eq. 102 right after the assumed
initial conditions becomes questionable. In order to avoid an inaccuracy
in the computation of the wavefront resulting from the use of Eq. 102,
the following lumped equation of continuity is used to locate the wave-
front:

A

in which Vol, and Vol, are the volumes of water retained on the' ground
surface at time levels 1 and 2, respectively, and Vol;, is the total
volume of water flowing into Voly during At {(i.e., from time level 1
to time level 2). Expressions of the volumes can be normalized by using
A, times Ly. In Eq. 109, Volq and Volin are supposedly known or can

be computed directly from input data at time level 1, while Vol; can be
obtained from the results just computed at time level 2. An iteration
procedure such as the Newton-Raphson Second Method can be set up to. find
sj as follows: (1) assume SJ, (2) solve Eqs. 50 and 100 simultaneously
for Aj, (or hy) and Vi (3) compute £ by use of Eq. 99, (4) check if Eq.
109 is satisfied, and (5) if Eq. 109 is not satlsfled repeat steps (1)
through (4).

Vol, = Volq + Voly, . . . . . . . . . (109)

Another good example of the application of the discontinuity equa-
tions, Eqs. 99 and 100, is the calculation of the internal boundary be-=
tween overland flow and channel flow, where the water surface in the
gutter flow is assumed to be horizontal, such as shown by line AA' in
Figure 15, but may become continuous (Figure 15a) or discontinuous
(Figure 15b) with the water surface of overland flow depending upon the
flow conditions at the internal boundary.  The generation and propaga=~
tion of the discontinuous internal boundary can proceed in the same way
as described above. In this case, the depth on the right~hand side of
the discontinuity, hg, is the depth of gutter flow, hg, which can be
calculated from the geometric relationship of the gutter cross=section
in relation with the overland flow profile and the location of the in-
ternal boundary. The velocity and depth on the left=~hand side of the
discontinuity, Vj, and hj, can be extrapolated from the two adjacent up-
stream grid points, KN=1 and KN=2, (see Figure 15b) in the overland flow
part. :

If there is no discontinuity at the internal boundary, i.e., in-
equalities 107 and 108 are not satisfied, the location of the internal
boundary is the intersection of the water surface between overland flow
and gutter flow (see Figure 15a).
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If the gutter flow is of fixed channel type, as shown in Figure 16,
as along as the depth of flow, hg, in the gutter is less than the allow-
able maximum channel depth, hg , the internal boundary between the over=
land flow and channel flow is fixed. Therefore, the boundary condition
at the downstream end (i.e., grid point KN) of overland flow is an over-
fall condition, Eq. 96, and the method described in the section of down-
stream boundary condition can be applied to the computation of the depth
and velocity of overland flow at grid point, KN.

Geometric elements of gutter flow section

The computer model so developed consists of a number of equations
expressed in terms of basic geometric elements of the flow section such
as the flow cross=sectional area, A, the flow depth, h, the hydraulic
radius, R, the hydraulic depth, D, the depth of the centroid of the flow
cross=sectional area, h, and the top width, T. Given or specified one
of the geometric elements for a channel with fixed flow boundary such as
fixed channel-type gutter flow (Figure 16), the rest of the geometric
elements can readily be determined from the relationships characterizing
the geometry of the flow section. This is not the case, however, for a
channel with moving boundary, such as curb~type gutter flow as shown in
Figure 15, in which in addition to one of the geometric elements as
indicated above, the top width, T, that moves independently with time
must be specified by extrapolation from the geometry of gutter for known
gutter and overland flow depths. Because the correct expressions of the
geometric elements are essential to the computation of gutter flow,
especialily for curb type gutter, they are formulated and appended to
this report (Appendix 2).

Location of critical section

The location of the critical section (i.e., the section at which the
flow changes from suberitical to supercritical) has no direct bearing on
the determination of hp and Vp at each grid point in the various flow
regimes. Nevertheless, it was computed wherever such a change in the
flow regime took place because it can be used to check the assumptions
made in the evaluation of the flow resistance for sheet flow over a rough
or smooth surface. Let there be a critical section in a channel between
two grid points A and B and xg denote the position of the critical section.
Then the following relationship must exist at Xg {Chen and Chow (1968)]:

- 1 cosd
Vg = E V//ES cost_ + hg I (110)

in which the velocity and hydraulic depth of flow at the critical section,
Vg and Dg, can be linearly interpolated from the known values of V and
D at points A and B; or
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- 5 A -
VS = VA + Ax . (VB VA) . e ] » ° . ° (111)
X, = X . '
= S___A .
Ds =D, + —x (DB DA) . . . . . ‘ . (112)

Substituting Egs. 111 and 112 into Eq. 110 yields a quadratic equation
in xg or Mxg, in which Mxg = xg = x5, as follows:

2 _ B
Al(AXS) -+ B1(Axs) + C1 = ( . . . . . R . (113)
in which
2
vV, =V
~ B ‘A
A1 - < AX > . . 'y . . - ° ° 3 (114)
o= Al %) 1 (P57 D) cose (1159
1 Ax F2 Ax coseo * :

c, =V - L <D %9§§—+h*> R € R 1))
[o]

The solution of the quadratic equation, Eq. 113, is well known; namely

/n 2
-B1 + B1 - 4A1C1

AxS = 2A1 . . . . . . . (117

Because AxS must be positive and C{ is always negative, only a positive
sign in front of the square root sign in Eq. 117 is used.

The foregoing procedures of computation are programmed in FORTRAN

language and executed on the UNIVAC 1108 computer. Detail of the whole
program is appended to this report.
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PARAMETRIC INFILTRATION MODEL FOR SIDESLOPE

The highway sideslope is either paved or grassed. If it is paved,
the ground surface is impervious (i = 0) and the analysis made previously
for the computation of runoff from the roadway can directly apply. How=
ever, if the sideslope is grassed, the ground surface is pervious [i=f{t)]
and the infiltration rate, i(t), that varies with time will have to be
evaluated at any desired time level along with the numerical computation
of the surface runoff. Rigorously speaking, the infiltration rate can
be computed by solving the boundary-value problem of rain infiltration
(Chen, 1975¢) in which the flow equation used may be the Richards equa-
tion. However, it is simpler and more useful in the engineering practice
to compute the infiltration rate by means of a small number of parameters
combined in certain forms of algebraic equation than by use of the Richards
equation. Although many algebraic infiltration equations have been pub-~
lished in the literature, the major obstacle that has prevented more
effective use of them lies in the difficulty in the evaluation of their
parameter values. 1In order to have them widely accepted as predictive
models in the subsurface runoff computation, reappraisal on the methods
determining their parameter values as well as theoretical concepts behind
their developments is necessary. This task was accomplished in another
phase of the research project (Chen, 1975¢).

All the algebraic infiltration equations were developed for computing
under a special condition the maximum possible rate -of infiltration (here-
after referred to as infiltration capacity). If the rainfall intensity is
greater than the final constant infiltration rate (or the hydraulic
conductivity at saturation), the rain infiltration process in general can
be divided into two stages: One is before ponding and another after
ponding. Therefore, a parametric infiltration model, if wvalid, must
consist of both stages. Before ponding the infiltration rate is equal
to the rainfall intensity and after ponding it is greater than or equal
to the infiltration capacity, depending upon whether or not there is a
non-zero water depth on the soil surface. Mathematically the parametric
infiltration model can be expressed as

r(t) for 0 st =t (118)

e
il

Fe) for t = t . . . . . . (119)

e
I

in which t, is the time of ponding. Note that the rainfall intensity,
r(t), may or may not vary with time, and that the infiltration capacity
function, f(t), can be in any form of the algebraic infiltration equa-
tions except for the Green-Ampt equation that is expressed implicitly as
a function of f and t. Evidently, in addition to the parameters in f(t)
needed to be evaluated, the time of ponding, t., must be determined
before the parametric infiltration model, Eqs. 118 and 119, can apply.
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Each of the available algebraic infiltration equations to be used in Eq.
119 such as the Green-Ampt equation, the Kostiakov equation, the Philip
equation, the Horton equation, and the Holtan equation was already
analyzed by the writer in another report (Chen, 1975c). However, for
simplicity, only the generalized Kostiakov equation that is believed to
be the most suitable form in fitting different infiltration capacity
curves for various soil-cover-moisture complexes is presented herein.

The Kostiakov equation with three parameters A, t,, and o may
be expressed as

f(t)=f°°+A(t-to)-a . e e . (120

in which f_ dis the final infiltration rate equal to the hydraulic
conductivity of soil at saturation, K . Factors that affect the infil=-
tration capacity are numerous. Combined effects of a specific soil, a
specific cover, and a specific antecedent moisture condition on the
infiltration capacity must be reflected on the parameter values of A,
tos and o, According to the recent study conducted by the writer
(Chen, 1975c), the original three-parameter infiltration model, Egq. 120,
can be shown to be in a typical form of the two-parameter model because
the parameter t, can be expressed in terms of the other parameters, A
and o, aside from r, the rainfall intensity. The respective expressions
of t, and t, in terms of A, o, and r, are recapitulated from Chen
(197gc) for use in the present study as follows:

. ) 1/a ) .
1 A
tp—1_u<f_K> N ¢ 1))
. s
1/a .
_ _a A _ '
t, = — (f — Ks or t = OLtp . . . . .(122)

in which r is the mean rainfall intensity that also varies with time and
is defined as .

t
f(t)=l—5r(t)dr e & X))
(o]

Because of the definition of E(t), Eq. 123, the determination of the
t, value by using Eq. 121 can only be accomplished by trial and error
as follows: (1) Assume t and then compute T from Eq. 123; (2)
substitute the ¥ wvalue into Eq. 121 for the computation of the

tP value; and (3) if the value of t_, just computed is larger than the
time, t, at which £(t) was determineg, the computation of r and tp
will continue until t = tp.
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The values of A and ¢ for each combination of various soil-cover=-
moisture complexes corresponding to distinctly different field conditions
of rainwater intake on the highway sideslope may be first estimated
according to the four major hydrologic soil groups and then modified in
accordance with plant covers and antecedent soil moisture conditionms.
This and other aspects of soil~cover-moisture complex:analysis of the
parametric infiltration model were discussed in detail in the other
phase of the research project (Chen, 1975c).
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DESIGN STORM PATTERNS

Knowledge of the time distribution of rainfall ip heavy storms
constitutes a basis for design of an urban storm drainage system. Sev=-
eral methods have been developed to formulate a synthetic (design) storm
pattern for the urban watershed runoff study. An extensive review of
literature on the various formulations of design storms conducted by the
writer (Chen, 1975b) has led to the development of the following general
approach in which design storm patterns using the rainfall intensity-
duration~frequency relationships were developed for all localities in
the United States.

The rainfall intensity=-duration~frequency relationship that can be
used to derive the design hyetograph equation may be expressed as

-
Y S e . e . . . . . . . (124)
av (td + b)c )

in which r,y is the average rainfall intensity in inches per hour; tgy
is the time duration of rainfall in minutes; and a, b, and c¢ are param=~
eters depending upon the location and frequeucy of the storm under study.
It was found from the U.S. Weather Bureau Technical Paper Nos. 25 and 40
that a positive sign in Eq. 124 mainly applied to a large section of the
country-perhaps to the portion east of the Rocky Mountains—-while a
negative sign generally applies to the west of the Rocky Mountains (Chen,
1975b). However, in the case of the negative b, Eq. 124 is not valid
for t3= b.

Consider that the area under a curve representing the time distri-
bution of the rainfall intensity, r, from the beginning of rainfall to
any time, t, is equal to that having Tav for the same time period,
namely

t
j; r dr = ryyt Y G V)
o

in which T is the integration variable for time and r is the rainfall
intensity in inches per hour at any time in the synthetic storm. Substi=
tuting the expression of tay (from Eq. 124 after changing its tgy to

t) into Eq. 125 and then differentiating the result with respect to t
yields the design hyetograph equation.
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Hyetograph Equations

The design hyetographs so formulated are somewhat different between
the case of the positive b and that of the negative b. Furthermore,
the design storms in each case can be classified dinto a completely advance
type storm pattern, a completely delayed type storm pattern, and an
intermediate type storm pattern. The three types of storm pattern are
defined according to the skewness of the pattern, y, (i.e., the ratio of
.the time before the peak to the total time duration).

Case (1): For positive b

For a completely advanced type storm pattern ( y = Q)

al(1 = e)t + bl

(t + b)1+c:

T =

. . . . . . . . . (126)

For a completely delayed type storm pattern ( y = 1)

af(1 = c)(td - t) + bl
r = for 0= t= ¢ . . . (127
[(td - t) 4+ b]1+c d

For an intermediate type storm pattern (0 < «y < 1)

al(1 - C)(td - t/y) +b]
r = Tre for 0 = t = Ytd . . (128)
[(tyg - t/v) + bl

a[(1 = ¢o)(t - Ytd)/(1 - v) +b]
r = e for vyt
[(£ = ye) /(1 = 7) +b]

45 t<t . (129)

Case (2): For negative b (c < 1)

For a completely advanced type storm pattern ( vy = 0)
c
-2 (l-c¢ 2b
r= i <1 " c> for t < T - = . . . . . . (130)
R e e N CE1
(t - b)
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For a completély delayed type storm pattern ( v = 1)

al(1 = c)(td - t) = b]

2b.
r = for 0= ¢= ¢, -
s 4o -
[(eg = ©) = b d 1-e
e e e e (132)
: . .
-.afl-c¢ _ _2b

r s c <-Tj;7;> for t, T - o S t=ty .. (133

For an intermediate type storm pattern (0 < vy < 1)

al(1 = o) (ty - t/y) - bl
r = TTe for 0 £ t = vt
[(td - t/y) - bl

c
- a 1 =-c _ _2by 2b(t = Y
r < < 1 + c> for Ytd 1 =c =t = td+ 1-c
. . . . (135)
al(1 = e)(t = vyt )/(1 = v) - b] -
[t = ve)/(1 = ) = b]
. . . . (136)

The methods of determining the parameter values of a, b, ¢, and Y
were described in detail in the other phase of this research project
(Chen, 1975b).

Mean Rainfall Intensity

The mean rainfall intensity, T, needed in the calculation of the
time of ponding, t.,, by means of Eq. 121 can be expressed specifically
" for the design storm equations,; Eqs. 126 through 136. Each of the
expressions of v in Eq. 126 through 136 can be integrated with
respect to time and then divided by the elapsed time of rainfall, t, as
shown in Eq. 123. The following results for different cases and types
of storms are obtained. )
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Case (1): For’positive b

1 Yy =20
I~=—-—""—~—C—...,..,.‘...(137)
(t + b)
2 y=1
- at a(t, = t)
(td+b) (td-t+b)
3 0 <y <1
) i ayt ay(t, -~ t/vy)
(£, + D) [(tg = £/7) + b]
. . . . (139)
- [ ayt a(t = yt,)
r = %— d a + d c ytd =t = td
(6g + D) [(t = ve)/(1 = v) +b]

. . . . (140)

Case (2): For negative b (c < 1)

1. Yy =0
c
=_a (1=-c¢ 2b
r—bc<1+c> t751-c . . . . . . (141)
Po oy 2 : : (142)
(t = b)
2. yvy=1
) at a(c, - t)
r=% dc- d S OStStd-12]_3
(tg = B)°  [(ty = t) - b] ¢
. . (143)
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0 <y <1
ayt ay(e, ~ t/ .
=1 d_ a” M 05 s ye, - o2
- T-c
(eg = D [(ey = t/1) - b1 ‘
. . . (145)
ayt ) [
- 1 d a 1=c
T = — e i PR (t - Yt )
t (td - b)C ¢ <1 + c> d
2b 2b(1 =
ve, - = _YC Sty + _b1<__c_vl, (146)
1 ayt, N a(t = Ytd)
t
(g = B)¢  [(t = vt/ =) - bl°
ytd+g%(-1_—'—g—)-5ts ty S € 1))

74



ACCURACY OF THE MATHEMATICAL MODEL

An urban highway watershed consists of several sub-basins, as de-
scribed previously. Runoff from each of these sub-basins jointly or
independently contributes to the total flow of storm water at the drain=-
age inlet. For example, storm water on roadway and shoulder first moves
as overland flow, then at the far downstream end of the overland flow
enters as gutter flow which may or may not collect an additional amount
of water coming from the sideslopes, depending upon a highway drainage
condition, and finally all the storm water so collected enters the inlet,
if the inlet is operated with 100 percent efficiency. Whether the com-
puter model so formulated can accurately simulate all the parts of the
rainfall~runoff processes in a highway watershed must be examined. In
other words, the physically~determined values of the friction parameters
such as C, ¢, k, a, and b embedded in the friction slope expressions (e.g.,
Egs. 81 and 82) have yet to be validated before their general use in prac-
tice. For convenience, the validation of the computer model was carried
out in two stages: First, it was madé on the overland flow only and next,
on the combined overland and gutter flow.

The accuracy of the computer model developed for overland flow was
checked by using basic hydrograph field data obtained from the Los Angeles
District Corps of Engineers (1949-51) airfield drainage investigation at
Santa Monica, California, and that for combined overland and channel flow,
by using field data collected from two urban highway watersheds in the
Salt Lake City area, Utah (Fletcher and Chen, 1975).

Examination of Overland Flow Computer Sub-model

Six different sets of input data were chosen from the Corps of
Engineers (1949-51) airfield drainage hydrographs for examining the
overland flow computations on a paved surface. Table 1 lists for 6
runs the values of the rainfall intensity and duration, channel length,
and bed slope for a paved surface tested.

Included in the Corps of Engineers (1949-51) airfield drainage
investigations are the measured hydrographs for simulated turf surfaces
which were made either of expanded metal or of combined chickenwire and
expanded metal. No attempt was made, however, to examine the hydrographs
for simulated turf surfaces because the values of the parameters, a and
b in Eq. 82 and k in Eq. 19, for such surfaces are unknown. Note that
the determination of the friction parameters for unknown surfaces re=
quires an evaluation (identification) process using either a physical
model (Chen, 1975a) or a mathematical model (including the governing
equations with appropriate initial and boundary conditions) as well as
a set of concurrent input (rainfall) and output (hydrograph) measurements.
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Table 1. List of input data for Los Angeles District Corps of Engineers
(LADCE) airfield experimental runs on a paved surface.

LADCE  LADCE ¢¢Rainfall?®’ ¢¢Rainfall?®’

Present ' Test Test Application Application Channel Bed
Study Code Date rate Duration Length Slope
Run No. No. M/D/Y r(in. /hr) td(min.) L{ft) S(%)
1 A6 10/27/49 8.128 8 84 0.5

2 A7 12/ 3/49 0.860 16 84 0.5

3 A45  10/25/49 8. 306 14 336 0.5

4 B6 9/22/50 7.350 9 84 1.0

5 B6 9/22/50 7.230 1.15,1.50,1.75 84 1.0

6 Cc10 3/24/51 7.460 6 168 2.0

The latter approach using a mathematical model is an inverse problem
which has been solved by trial and error (Burman, 1969; Schreiber and
Bender, 1972) and more systematically and efficiently by an influence
coefficient algorithm developed by Becker and Yeh (1972a, 1972b, and
1973) and Yeh (1973). Although the influence coefficient algorithm has
been shown to be very powerful in the evaluation of the friction param=
eters embedded in a hyperbolic partial differential equation describing
the hydrodynamics of unsteady open channel flow, it is at present limited
to the subcritical flow range that detracts us from its general applica=
tion. From the practical point of view, however, it would be much
simpler to determine the friction parameters experimentally for flow at
the equilibrium state than the application of an optimization technique
to an unsteady, nonlinear flow system by minimizing the maximum of the
absolute values of the errors (differences) between the observations and
the solutions of the system equations. For particular use in the present
study, the friction parameters for natural turf surfaces have been ex-
perimentally determined (Chen, 1975a), as already summarized in the pre-
vious section. Since it is not the objective of this study to develop

a new method to identify the friction parameters, the parameter identi-
fication problems in unsteady open channel flows are not discussed
further herein.

The roughness size of a paved surface used in the Corps of Engineers
(1949=-51) airfield drainage investigation happened to be approximately
equal to that of the glued-sand surface used in Woo and Brater’s (1961)
experiments. It is thus necessary to examine the validity of Eq. 82
with a = 235 and b = 0.296 using the field data. Note that in a similar
study involving the comparisons of measured and computed hydrographs,

Chu (1973) has used Eq. 81 instead of Eq. 82.
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Rainfall curation for each field run selected, except for run No. 5,
was long enough so that the outflowing discharge had actually attained
the equilibrium state before rain stopped. All the runs were performed
on a 3-ft wide impervious paved surface which has roughness equivalent
to Manning’s n = 0.012. )

The roughness size, k, for turbulent flow in the mathematical model
(Eq. 19) must be specified before executing it on the computer. The
Strickler formula can be used to convert the value of Manning®s n to that
of the hydraulically °¢‘equivalent?®’ roughness size, k. However, consider-
ing the wide range of the relative roughness, R/k, that overland flow
covers, one may prefer the following formula to the Strickler formula.

n
1/6

=0.0309 . . . e e e e e ..o (148)
k N

This equation was derived by Chen and Chow (1968) using the relationship
between Eq. 19 and the Manning formula. Therefore, for given n = 0.012,
k equals 0.0034 ft. .

The distance interval, As, for the channel is obtained by dividing
the channel length equally into 7 sections (arbitrary, i.e., the size
sufficient in the computer operation within practical accuracy, but not
too excessive) with each section having a length As = L/7, where L is
the total length of the channel. Thus, As = 12 ft for all runs except
for runs 3 and 6. The values of As for runs 3 and 6 were equal to 48
ft and 24 ft, respectively. Because the computation is conducted on a
dimensionless basis, the dimension of the distance or distance interval
is no longer important. The accuracy of the computation may change with
the number of grid points selected, but it should not vary drastically
unless the number of grid points considered is too small.

The time interval, At, can be determined by solving the Courant
limit in Eq. 48. However, when the ground surface is initially dry,
the flow starts with very small hydraulic depth, D, and velocity, V, which
in turn give a large At for a fixed As from Eq. 48. Unfortumately, use
of a large At at the initial state may produce computational instability
which is often beyond control at subsequent time levels. To avoid such
computation instability a much smaller At is required which, however, in
terms of the increased computer time, cannot be considered as a practical
improvement. Chu (1973) showed that the following empirical formula was
suitable for use in the selection of At with this type of initial boundary-
value problem.

At = Ateq * Time ¢ Factor . . . . . . . . (149)

in which Atgq is the time interval at the equilibrium stage and is set to
a value a little bit less than the Courant limit; ‘“Time’®’® is the nor-
malized time from the beginning of rainfall; and €‘Factor’? is a

77



coefficient equal to 0.1 divided by the normalized initial time when the
normalized initial time is greater than Q.1. If the normalized initial
time is less than Q.1, ¢°Factor’’ must be set to a value of 1. Note that
use of Eq. 149 enables the numerical computation to be started with the
time interval, 0.1Ateo or less. It was programmed  in such a way that by
the time the flow approaches the equilibrium state, the time interval is
automatically controlled by the Courant criterion, Eq. 48, or Ategqe

The computed and measured hydrographs for run 1 through run 6 are
depicted in Figures 17 through 22, respectively.. It can readily be seen
from these figures that the agreement between the computed and measured
hydrographs in general seems to be good for most large flows under high
intensities, but rather poor for small flows under low intensities or no
rainfall. The poor results were anticipated for lack of a better expres=
sion of flow resistance than use of an empirical formula, Eq. 82, for
shallow flows with flow rate per unit width, q, as low as 0.002' cfs/ft or
less. It appears that there must exist some intrinsic natures of the low
flow regime which the present theory failed to describe, but would account
for large errors in the computed hydrographs. This and other peculiar
features of the computed hydrographs,-different from the measured ones,
require justification prior to the general use of the overland flow sub~-
model. The following comments with regard to the accuracy of the com-
puted hydrographs merit attention.

1. At the beginning of rainfall, the computed hydrograph seems to
rise ahead of the measured hydrograph for most runs examined. This con=~
sistent lag in time in the rising stage can be attributed to the initial
detention of the rainfall by the surface material and depression storage,
if any, before the surface runoff starts. It is well known that the
initial detention refers to the storage effect due to overland flow in
transit at the beginning of rainfall and varies with the degree of dry-
ness of the surface material. Hortom (1935) stated that this initial
detention ¢€¢commonly ranges from 1/8 to 3/4 inches for flat areas and
1/2 to 1.5 inches for cultivated fields and for natural grass lands or
forests.??

The specific magnitude of depression storage has never been measured
in the field because of obvious difficulties in obtaining meaningful data.
For practical purposes, however, an average value may be assumed. On
moderate or gentle slopes, for example, Horton (1935) estimated that
pervious surface depression €‘can commonly hold the equivalent of 1/4 to
1/2 inch depth of water and even more on natural meadow and forest land.’?
On the other hand, based on analysis of periods of high rates of rainfall
and runoff, Hicks (1944) has estimated depression storage losses of 0.20,
0.15, and 0.10 inch for sand, loam, and clay, respectively. For a series
of analyses, Tholin and Keifer (1960) assumed an overall total depression
storage of 1/4 inch on pervious areas with a range of depths of specific
depression up to 1/2 inch and 1/16 inch, on paved areas with a range of
depths up to 1/8 inch; for another series these depths were doubled.

78



6L

0.020

0.oi8}-

0.0l6

0.0l4}

0.012}F

0.0I0}

0.008}

0.006 |-

0.004

q , Discharge per Unit Width (cfs/ft)

0.002

_[—-Theoretical equilibrium state
(g.=0.0158 cfs/ft)

INPUT_DATA

8.128 in./hr.
8 min.

84 ft.
0.005
0.0034 ft.

-
]]

Rain stops
ﬂ.-'
n

wr
1]

x
1]

LEGEND
Measured

—————— Computed

| 1 | | ] | L [ S S, 1 |

3 4 5 6 7 8 9 0 ]| 12 13

t, Time (min.)



08

0.002

.

[ N

5 _ /Theorehcal equilibrium- state

T (g, = 0.00167 cfs /ft.)
Rain stops
- INPUT DATA
[T
; r = 0.860 in./hr.
'z-) e ?d = 16 min.
: /__._—/—— \ L = 84 ft.
3 5 00l \ S = 0.005
E S ) \\ k = 0.0034 f1t.
"é
2
L
(3]
Q
& LEGEND
% Measured
(2]
a e e e .Computed
o
0 1 i ! ! | 1 TTe———

10 12 14 16

t, Time (min.)

Figure 18.
Engineers Airfield Experiment.

Comparison of measured and computed hydrographs for run 2 of Los Angeles District Corps of



18

0.08

-
~
[T
S 0.07
£
- 0.06
=
= 0.05
=)
2 o0.049
1))
E'.
8 0.03
(3]
L
()
_ 0.02
o
0.0t
o)
Figure 19.

Rain stops
Theoretical equilibrium state
n T ——— 1 (qe = 0.0646 cfs/ft.)
/ \
/ \
/ \
- / INPUT_DATA
// r = 8.306 in./hr.
— / \\ ty = 14 min.
\ L = 336 ft
\ S = 0.005
p \\ k = 0.0034 ft.
/ LEGEND \
/ - \
/ ———— Measured \
/ ————— Computed \
/ \
/ |
</ L1 ] l l | 1 LN

2 4 6 8 10 12 14 16

t, Time (min.)

Comparison of measured and computed hydrographs
Engineers Airfield Experiment.

18 20 22 24 26.

for run 3 of Los Angeles District Corps of



z8

0.020

0.018

0.016

0.014

0.012

0.010

0.008

0.006

q, Discharge per Unit Width (cfs/ft)

0.004

0.002

r_. .
Rain stops
N, » N, . caen s
. \\’,"\\/,’ \ / \\_,l' \L _/——Theorehcol equilibrium state
| (g, = 0.0143 cfs/ft.)
\
\ INPUT DATA
r = 7.350 in./hr.
ty= © min.
L = 84 ft
\ S =0.0!
\  k=0.0034 ft.
LEGEND \
Measured
————— Computed

o

l {

Figure 20.

1
4 5 6 7 8 9

t, Time (min.)

Comparison of measured and computed hydrographs for run 4 of Los Angeles District Corps of

Engineers Airfield Experiment.



€8

0.014

tq= 1.75 min.
0.013} \
o.oi2l \\ LEGEND
\ ~———— Measured
L0l \ O~ ~———-0 Computed {t;=1.75 min.)
0 \ d
&-—————8 Computed (t4=1.5 min.)
= o.oi0f JA &-—————a Computed (t,= 115 min.)
3 \
T 0:009r ] INPUT DATA
£ o.008} Il L\ r = 7.350 in./ hr.
2 \ * L = 84 ft.
* o.o7f \ $ = 0.0
= \
T M~ N\ k = 0.0034 ft.
S o0.006} . \
® L- A \\
2 0.005 W\
® \\\\\\
2 t,= 1.50 min.
= d
s:; 0.004 \\)\/—
3 0.003 \ \ = i
o . B \ tg = 1.15 min.
X AN /
o 0.002} N |
0.00! —faﬂ 'Y -
N N
o 1 i i \*ﬂh- Y

~F

o) } 2 3 4 5 6
t, Time { min.)

Figure 21. Comparison of measured and computed hydrographs for run 5 of Los Angeles District Corps of
Engineers Airfield Experiment.



%8

0.05

0.04

0.02

0.0i

g, Discharge per Unit Width ( cfs/ft)

Figure 22.

0.03}

LEGEND

Measured

Computed

~ ’/—Theoreticql aquilibrium state

i 1

(g.=0.0280 cfs/ft.)

INPUT DATA
7.4860 in./hr.
= 6 min.

168 f¢.

0.02
0.0034 ft.

wrg -
il LI | il

4 5

t,

Comparison of measured and computed hydrogtaphs for run 6 of Los Angeles District Corps of

Engineers Airfield Experiment.

6 7 8 9 10 I 12 i3

Time (min.)



The small depth assumed at the initial state in the present numerical
scheme, as described in the preceding section, is tantamount to assuming
the initial detention, though it appears much smaller than what should be
in terms of Horton’s (1933) suggested values. The hardest to determine
is, of course, the magnitude of depression storage which is unknown a
priori and may vary from case to case although one can easily estimate it
using a least squares procedure by best fitting the. computed hydrograph
to .the measured one or by trial and error. For simplicity, however, the
adequate magnitude of depression storage is not imposed in the model at
this stage, partly because of the necessity in evaluating the difference
between the measured and computed hydrographs resulting from this unknown,
but important, variable and partly because of its relatively insignificant
effect on the hydrograph, magnitudewise and timewise, under a uniformly
prolonged storm except by a time lag (or shift in time coordinate) corre-
sponding to the length of time required to £ill it up. In general, the
more nonuniform in space and time a given storm, the more sensitive is
the peak and shape of the computed hydrograph to the difference in the
amount of depression storage assumed. This and other possible improve-
ments of the computer model will be considered in the later computation,
especially when field data on storm and runoff from the two urban high-
way watersheds in the Salt Lake City area are analyzed.

2. In all of the measured hydrographs, it is observed that the dis~-
charge suddenly increases by a small amount immediately after rain stops.
This is probably due to the spontaneous disappearance in the resistance
force produced by the raindrops on the water surface. This phenomenon
is prominent for runs 1 and 3 under heavy rain on small slopes such as
shown in Figures 17 and 19 respectively. Apparently, the additional
resistance to the flow resulting from the raindrop impact was not accu-=
rately accounted for by the overpressure head alone, as expressed by
Eq. 6. It is believed that raindrops not only increase the pressure of
the flow, but also affect its velocity distribution which has not been
considered in this study.

3. Whether or not the computed runoff rate per unit width, q, is
stable and convergent at the equilibrium state depends in some degree
upon the states or regimes of flow predominating over the bed. Basing
on the computer outputs obtained from the six runs, it is discovered
that the effect of gravity relative to inertia, as represented by the
Froude number, upon the computational stability and convergency of flow
is much greater than that of viscosity relative to inertia, as repre-
sented by the Reynolds number. For example, the computed hydrograph
for run 1 (Figure 17) under a uniform application rate is quite stable
and converges to the theoretical value at the equilibrium state where
the flow so computed is in the regime being all the way subcritical,
partially laminar upstream, and partially turbulent downstream. Al-
though the flow for run 3 is also subcritical all the way from the
upstream end to the downstream end, the computer model apparently under-
estimated the runoff rate at the equilibrium state (Figure 19). A
comparison of the computed flow regimes for run 1 and run 3 reveals
that there is a significant difference percentagewise in the Froude
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number along the channel, but not very much in the Reynolds number.

The flow in run 1 is subcritical, but not so nearly critical (F = 1) as
found in run 3. It appears that the adverse effect of gravity on the
computational stability and convergency worsens with the increase in the
Froude number. This is exemplified by the computed hydrographs for runs
4 and 6, as shown in Figures 20 and 22, respectively.

The oscillation of the computed runoff rate, q, at the quasi-
equilibrium state for run 4 (Figure 20) seems to be a typical flow phenom-
enon resulting from the time-varying state of flow. In this case, the flow
produced under a given input and a certain combination of channel condi-
tions is computed sometimes as subcritical all the way and sometimes as
partially supercritical downstream, resulting in the oscillation of the
computed q corresponding to the periodic change in the state of flow. 1In
other words, when the flow is found all the way subecritical, the computed
q is just about the theoretical value at the equilibrium state, whereas
it rises more than the theoretical value when the flow is partially
supercritical downstream. The overestimation of q as a result of a high
Froude number in flow can be more clearly demonstrated in Figure 22 for
run 6 in which the flow over a large portion of the channel length is
found supercritical.

4. The computed peak discharge, as measured in terms of its magni-
tude and time of occurrence, in response to each of the various non-
equilibrium durations of the €‘rainfall’’ time (e.g., tg = 1.15, 1.50,
and 1.75 minutes in Figure 21) confirms quite well to the measured value.
It appears that the longer the duration of the application time, the
higher is the accuracy of the computed peak discharge, both magnitudewise
and timewise.

5. The accuracy of the computed runoff rate, q, worsens noticeably
with the lower flow, as indicated previously. A typical example of this
poor computation using the present technique is depicted in Figure 18 for
run 2 under an application rate less than 1 in./hr. The computer model
underestimated quite badly the theoretical value for run 2 at the equilib-
rium state. The underestimation of the q for very low flows under small
application rates is also evidenced in the lower part of the computed
hydrograph in the receding stage of all runs. Despite this technical
problem in the computation of such low flows, no attempt could be made
to improve the present approach for lack of a better method presently
available in the computation. Of course, in future studies, any new
method which is found to improve the numerical computation of low flows
can be incorporated into the computer model without impairing the validity
of the present approach.

6. Errors involved in the computer results would more likely in=
crease with the incorrect evaluation of the Darcy=-Weisbach friction co=
efficient, f, than with the reduction in the number of grid points adopted
in the computation. Because the present numerical scheme has been devel-
oped on a dimensionless basis, accuracy in the computation does not seem
to be greatly affected by the distance interval, As, unless the number of

86



grid points selected becomes excessively too small to carry the normal
operation of the expected computation. With the present approach, as
described previously, dividing the channel length into a number of sections
less than 4 is not recommended. For illustrating the sensitivity. of
accuracy of the computation to the distance interval (or the number of
grid points), the hydrographs for run 1 were again computed by using

As = 6 and 21 ft and are plotted in Figure 23 for comparison with the one
using As = 12 ft (Figure 17). It can be readily seen from Figure 23 that
the computation by using 5 grid points (i.e., equivalent to 4 sections
plus 1 for the end point) yields as good accuracy as the ones produced

by using the larger numbers of grid points. Since one of the major con-
cerns regarding the use of the explicit numerical scheme is the compara-
tively large amount of the computer time required in the solution over a
prolonged time span of rainfall, the reduction in the number of grid
points down to as minimum as 5 for a channel of any length without im-
pairing the accuracy of computation may be considered as a practical im-
provement. Henceforth, the minimum number of grid points, namely 5, will
be taken in the computation if the situation permits.

Examination of Combined Flow Computations

Rainfall=-runoff data on major storms during the 1972=73 rainy season
(April to November) from two typical urban highway cross=sections in the
Salt Lake City area were collected for examining the validity of the com-
bined flow computer model. Because details of hydrologic data collected
both at Layton site and at Parleys site No. 1 and No. 2 were already given
in another report (Fletcher and Chen, 1975) under the field phase of the
present research project, they are not recapitulated herein except for
those which were used as input data in the computer model.

Input data

Layton site. The highway watershed at Layton site is a 3=lane road-
way with shoulders of different widths paved on both sides and connected
along a steep sideslope on one side, as shown in Figure 24(a). The drain-
age area under investigation is not exactly rectangular in shape, but on
the average may be considered as a rectangle, 574 ft long and 106 ft wide
(on the horizontal plane), including the top width of a fixed channel-
type gutter (Figure 16) lying in between the roadway and the sideslope.
The transverse profile of the roadway plus the paved shoulders measured
in the field is not a parabolic curve (Figure 6), but rather a straight
line with cross slope varying from 1.96 percent at the upstream end of
the channel to 1.24 percent at the inlet side. For simplicity, the aver-
age cross slope of the roadway and the paved shoulders may be taken as
1.6 percent. The slope of the sideslope also varies from 64.4 percent to
60.5 percent at the upstream and downstream ends of the channel, respec=
tively. Again, for simplicity, the average value, 62.5 percent, was used
in the computation. The gutter slope was measured at 0.296 percent.
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The roughness size of the.road surface including the roadway and
paved shoulders was assumed.that of glued sand (Woo and Brater, 1961) or
Los Angeles District Corps of Engineers® (1949=51)'paved surface which
possesses approximately k = 0.0034 ft.. The sideslope and the drainage
channel are covered with. Crested Wheat grass which does not look so dense
as the ones tested in the laboratory enviromnment (Cheh, 1975a). Despite
this discrepancy in appearance between the grasses tested and simulated,
the C value in Eq. 21 for laminar flow was computed by means of Eq. 82
with the experimentally=~determined values of a and b for good solid
natural turf having been assumed throughout the present computation for
lack of a better expression. ‘

The infiltration rate was computed by using the Kostiakov equation
(Eq. 120) in which fe = 0.05 in./hr, o = 0.5, and the value of A was
determined, for practical purposes, in terms of the potential infiltra-
tion, S, in inches as (Chen, 1975¢c)

A=10.2801-n]% F-f) Ce oo as0)

in which § = 0.05 in. corresponding to the runoff curve number (CN) equal
to 99.5 was evaluated from the estimated infiltration capacity curve
(Fletcher and Chen, 1975).

Two storms were selected from the major storms analyzed and tabu=
lated by Chen (1975b). An inspection of field data for major storms
(Fletcher and Chen, 1973) reveals that there are not too many storms which
are large and long enough to be meaningful for validation tests. The two
storms selected at Layton site are those which occurred on September 5,
1972 and May 25-26, 1973. The former storm at rain gage L=~2 can be best
fitted by using Egs. 128 and 129 with a = 28.19, b = 11.21, ¢ = 0.980,
tg = 345 min., and vy = 0.177 while the latter storm at rain gage L~5, if
expressed in the parametric equation (Eqs. 128 and 129), has the parameter
values a = 54.62, b = 40.55, ¢ = 1.156, tg = 60 min., and y = 0.323. TFor
simplicity, the time-varying rainfall intensity for each storm was thus
determined from the idealized hyetograph, Egqs. 128 and 129, rather than
from the actual hyetograph, as characterized by a number of step pulses
in unequal magnitude and time length or a series of such pulses.

Parleys site. The highway watershed at Parleys site is composed of
two independent ones. As shown in Figure 24(b) and (c), one which drains
storm water from a steep sideslope to a fixed channel=-type gutter is
referred to as Parleys site No. 1 and the other which drains storm water
from a paved shoulder and a 4=lane roadway to a curb=-type gutter (Figure
15), Parleys site No. 2., The drainage areas at both sites which are
adjacent to each other are again not exactly rectangular in shape, but
for convenience were considered as rectangles having the areas equal to
352 ft x 71 ft (including the top width of gutter) and 339 ft x 70 ft
at sites No. 1 and No. 2, respectively.
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Because the alignment of the roadway under investigation is curved,
construction of ¢‘super elevation’’ apparently changes the transverse
profile of the road surface throughout the whole length of the roadway.
Since the present computer model did not take more than one transverse
profile of the road surface into account, as mentioned previously, the
average cross slope of the roadway including the paved shoulder was
estimated from 4.28 percent at the upstream end of the gutter to 2.99
percent at the inlet side. The average of both values is 3.64 percent,
which was used in the computation. The slope of the sideslope also varies
from 42.5 percent at the upstream end of the gutter to 32.6 percent at the
inlet side. The average slope of the sideslope is thus 37.5 percent which
was again given as an input data for solution. The gutter slopes at the
two sites were assumed to be both 2.52 percent.

Regarding the roughness sizes of the paved and grass surfaces, the
magnitudes cited at Layton site were also assumed to be equally applicable
here. Therefore, the value of the Darcy-Weisbach friction coefficient
was estimated by using the same equations as used at Layton site.

The infiltration capacity was also simulated by means of the Kostiakov
equation (Eq. 120) that has fo = 0.05 in./hr, @ = 0.5, and S = 0.10 in.
(Eq. 150) corresponding to CN = 99 of a soil-moisture=-cover complex.

Three major storms were selected from the field data (Fletcher and
Chen, 1975; Chen, 1975b) at Parleys site as rainfall input. Those se-
lected are storms which occurred on October 4, 1972, July 19, 1973, and
August 16, 1973. None of them appears to be large and long enough for
the present method to solve the routed storm flow within tolerable accu-
racy. The actual hyetographs of all the storms were best fitted by using
Egs. 128 and 129 with the values of the storm parameters a, b, ¢, and
v having been determined from a least squares procedure (Chen, 1975b).

It was found that for October 4, 1972 storm at rain gage P-6, a = 16.43,

b =2.15, ¢ = 0.938, tg = 286 min., and vy = 0.052; for July 19, 1973 storm
at rain gage P-3, a = 62.39, b = 19.10, ¢ = 1.027, tq = 145 min., and vy =
0.216; and for August 16, 1973 storm at rain gage P-5, a = 27.57, b = 3.01,
c = 1.019, tg = 73 min., and y = 0.096. The time=-varying rainfall
intensity for each storm was thus directly determined from Eqs. 128 and

129 with each of the preceding set of storm parameter values.

Computed hydrographs

Because the pattern in which a storm actually occurs and the

field conditions under which storm water moves from the watershed divide
to the drainage inlet are somehow different from what can be described by
using a set of the mathematical equations, it is expected that there are
some disagreements between the computed and measured hydrographs. It is
generally understood that the more complicated the system under study
(including both a rainfall event, or a series of such events, and an ele-
mentary watershed, or a combination of such elementary watersheds), the
larger would be the disagreement between the computed and measured values.
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Although both highway cross-sections under investigation are small water-
sheds with drainage area less than 0.1 square mile, the complicacy of the
storm patterns and field conditions such as strong  local disturbance and
car splash caused by passing vehicles (Fletcher and Chen, 1975) may
greatly reduce the reliability of field data so collected and thus even-
tually destroy the °¢‘mean=-value®’ approach on which the mathematical
model is based. Consequently, if there are any disagreements between

the measured and computed hydrographs, they may be attributed to one or

a combination of the following:

(1) Accuracy and representativeness of the measured input and out-
put data are questionable. As indicated above, traffic disturbance might
significantly alter the measured values at various rain gages and discharge=
measuring flumes. For example, an inspection of the field data (Fletcher
and Chen, 1975) reveals that none of the six recording rain gages in-
stalled on each site has measured exactly the same intensity as the rest
of the gages even under the same storm. It is not clear whether this
is caused by the nature of a thunder storm which is moving or the adverse
aerodynamic effects of highway vehicles. The variety of the rainfall in-
tensity, magnitudewise and timewise, makes it extremely difficult to select
the one that represents the storm under study. Criterion of selection for
those which were used as input is rather arbitrary. In general they were
selected as closely as possible to the ones which might hopefully pro=-
duce the corresponding measured hydrographs. Since the patterns of the
measured hyetographs at the six rain gages are mearly identical [i.e.,
about equal y values (Chen, 1975b)] for each major storm analyzed, simply
the largest one among the six was chosen in order to maintain the better
accuracy of computation. However, the more representative hyetograph can
be obtained by first plotting isopluvial maps at different time intervals
and then averaging the accumulated amount of rain over the area and time
interval considered. Of course, the latter method of improvement on in-
put data is only possible if a network of more than six point measurements
is available.

An amount of water lost or ¢‘diverted’’ in splash and spray caused
by moving traffic during a storm, especially at Parleys site No. 2, was
substantial (Fletcher and Chen, 1975). This would in effect change sig-
nificantly the shape of the measured hydrograph, magnitudewise and time=
wise, from the one which would have been otherwise. Because the present
computer model does not take this effect into account, a large discrepancy
between the measured and computed hydrographs from the roadway (Parleys
site No. 2) alone is expected. Unfortumately there is no way to separate
this effect from others and determine the significance (or insignificance)
of its effect.

This inaccuracy in the measured hydrograph at Parleys site No. 2 was
further aggravated by inherent instrumentation problems (Fletcher and
Chen, 1975) which cannot be corrected without resorting to a new instru-
mentation system. Bad output is evidently reflected in the measured hydro-
graph, for example, of the August 16, 1973 storm, which, due to some unknown
causes, could not be simulated by using the present model. Therefore,
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the comparison of the measured and computed hydrographs for storms from
the roadway cannot be made herein.

(2) The smaller the rainfall intensity of a storm under study, the
worse is the accuracy of the computer results. As shown in Figure 18, the
present model underestimates very badly the computed gischarge of the low
flow. It is noted that most of the major storms under investigation, ex-=
cept for one, merely amount to the highest of 3 inches per hour or less
for a period of 2 to 3 minutes. Such small storms cannot produce the sur-
face flow which is large and deep enough to be computed reliably with the
method of characteristics due mainly to the dlfflculty in the expression
of the Darcy-Weisbach friction coefficient, f.

Another possible source of large computational errors might result
from the computation of the moving internal boundary where overland flow
meets with gutter flow, aside from the shock-wave computation that might
occasionally give trouble, too. Since small errors induced in the numer=
ical computation may travel upstream and downstream depending upon the
state of flow and grow unboundedly with hydrodynamic instability, the
computation of the shock waves, except at the wavefront of a moving storm,
was not performed in the present study by using a few control statements
although it is included in the computer program. Details of such con=~
trol statements are given in the appendix.

For simplicity, the actual hyetograph was best fitted by using a
least squares procedure to Egqs. 128 and 129 (Chen, 1975b) with storm
parameters a, b, ¢, t4, and y. This is a good approximation which may
be valid for practical purposes in view of varieties in measurements at
different gages, but may not be accurate enough for some storms which have
more than one peak. Because most of the thunder storms which we are in-
terested in studying are likely single-peaked, this type of the simplifi-
cation of the storm pattern is justified and maintained throughout this
study.

Another simplification in the mathematical modeling is related with
the evaluation of infiltration capacity at both sites. The values of the
infiltration parameters such as fw, 0, and S in Eqs. 120 and 150 were
determined on the basis of the October 4, 1972 storm (Fletcher and Chen,
1975). 1t is possible that the parameter values for other storms are
quite different from those determined from the October 4, 1972 storm be-
cause of the differences in antecedent moisture condition (Chen, 1975c).
This judgment in accounting for the differences is seemingly confirmed by
comparing the measured and computed hydrographs for the selected storms,
each of which is briefly discussed below.

The October 4, 1972 storm at Parleys site No. 1. A comparison of the
measured rainfall intensity and runoff rate, as shown in Figure 25, re=
veals that a large amount of precipitation was apparently lost in the
initial abstraction, I,. The initial abstraction that consists of inter-
ception and subsurface and surface storage (including initial detention
and depression storage) before runoff begins cannot be theoretically deter-
mined with the present knowledge in hydrology. The present computer model
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does not contain the computation of Iy, but assumes its value as an input
data. Various values of T, were thus input under the ‘‘simulated’’ storm
(broken line in Figure 25) and the corresponding hydrographs computed for
the purpose of comparison, as shown in Figure 26. The agreement between
the measured and computed hydrographs, despite apparent differences in the
assumed I, value, is strikingly good for the following major reasons.

(1) The storm pattern is single-peaked and Eqs. 128 and 129 are quite
accurate for the representation of the actual hyetograph. (2) The input
infiltration capacity was determined based on this storm.

In connection with the development of the parametric infiltration
models (Chen, 1975c¢c) using the Soil Conservation Serwvice (SCS) approach,
the writer has formulated a theoretical relationship between the initial
abstraction, I,, and the soil potential infiltration, S, (Appendix 3) as

Ia = 0.25 5 . . . . . . . . . . o (151)

which has the ratio of I, to S equal to 0.25 instead of 0.20 assumed by
SCS. Equation 151 was then used to correct any possible errors that

might be induced by the inaccuracy in the assumed expression of infiltra-
tion capacity. Because the parametric models of the infiltration capacity
at both sites were developed based on the October 4, 1972 storm, no
further improvement on the computed hydrograph thanks to Eq. 151 (Figure
26) was appreciated, however. It is hoped that use of Eq. 151 will im=
prove the computed hydrographs for the other storms.

For an assumed I, value, it is necessary to determine the time when
runoff starts. Thus, rainfall mass curve, which can be constructed by
integrating Eqs. 128 and 129 over time (i.e., equivalent to multiplying
the right-hand side of Eqs. 139 and 140 by time, t), may be used to com=
pute the time required for rain to accumulate the assumed I, value. The
Newton=Raphson method may be used for this computation; however, the method
failed sometimes because of the peculiar nature of Egs. 128 and 129, or
integrated forms thereof, Eqs. 139 and 140 at the peak. Instead, the
Interval Halving or Bisection Method (Fenves, 1967) was used.

The July 19, 1973 storm at Parleys site No. 1. The role that the
initial abstraction, Iz, plays in the computation of the inlet hydrograph
is very important. The sensitivity of the computed hydrograph to the
assumed magnitude of I, is reflected not only on the time when runoff
starts, but also on the shape of the hydrograph which responds subsequently
to the storm input as depicted in Figure 27. The various values of I, were
tested and the corresponding hydrographs computed, as shown in Figure 28,
for comparison. It can readily be seen from the comparison of the com=
puted hydrographs that the one with Iy = 3/8 in. and S = 1.50 in. (from
Eq. 151) best fit the measured hydrograph, timewise and magnitudewise,
except for a small span of time around the peak of the hydrograph where
the runoff discharge is overestimated. In view of the fact that a small
increase in the assumed value of I,, say by 1/8 in., to a total of 1/2 in.
(See Figure 28) has resulted in a substantial reduction in the peak as well
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as a time shift or delay in respeonse without changing the shape of the
hydrograph, a further improvement on the computed hydrograph due to I,
seems still possible.

The results from these computer experiments indicate that the quantity
I, appears to be the most important, single factor to.be considered in the
successful modeling of the surface runoff from the practical point of view.
Unfortunately it happens to he the most difficult, unknown quantity fo
determine from the theoretical point of view. Since the proposed para=
metric infiltration model (Fgs. 120 and 150) can be expressed in terms of
the soil potential infiltration, S (Chen, 1975c), the value of I, can be
determined either from Eq. 151 by using the known S value or from

o 1000 _
Ia.—0,25<CN 1o> N € -7

in terms of the known runoff curve number, CN, for a soil=cover-moisture
complex in question. For convenience in engineering application, the
initial abstraction values in inches for highway soil-cover-moisture com=
plexes are computed from Eq. 152 for CN values given by the writer in the
other report (Table 8 of Chen, 1975c¢) and tabulated in Table 2. Should
the rating table based on the catena concept (Chiang, 1971) be used as the
refined SCS classification for hydrologic soil groups, Iz values for groups
+ B, + C, and + D can be interpolated accordingly from Table 2. Since

the I, value so determined at Parleys site No. 1 varies from almost zero
(for the October 4, 1972 storm) to a little bit more than 0.375 in. (for
the July 19, 1973 storm) in the hydrologic soil group D (Chen, 1975c),

the corresponding antecedent moisture conditions (AMC) for both storms

are evidently different, viz., from Table 2 varying from AMC III for the
former storm to AMC I for the latter storm on the highway sideslope with
the same soil and plant cover at Parleys site. The variation of the Ig4
value demonstrates in part the applicability and usefulness of Table 2

for engineering practice.

Table 2. Estimated initial abstraction (Ia) in inches for highway soil~
cover-moisture complexes.

Antecedent . X .

Moisture Hydrologic Soil Group

Condition
(AMC) A B C D
AMC I 1.288 0.925 0.625 0.441
AMC II 0.549 0.374 0.247 0.160
AMC TIT 0.217 0.132 0.077 0.051

99



The September 5, 1972 storm at Layton site. The hydrograph at Layton
site can be thought of as a combination of one from the sideslope at Parleys
site No. 1 and the other from the roadway at Parleys site No. 2. Unfor-
tunately for those storms examined, none of the measured hydrographs at
Parleys site No. 2 appears to be reliable enough to be used in the valida-
tion of the computer model. However, the validation ef the computer model
including both parts (i.e., one from the sideslope and the other from the”
roadway) may be inferred to imply that if either part of the two is valid,
the other part must also be true. Therefore, the hydrographs in response
to the September 5, 1972 storm, as shown in Figure 29, were computed for
various values of I, and plotted in Figure 30 for comparison.

An inspection of Figure 30 reveals that the computed hydrograph for -
I, = 5/16 in. (0.3125 in.) appears to best fit the measured hydrograph
timewise. The peak of the computed hydrograph is much larger than that
of the measured hydrograph, but it is reasoned more likely in the light
of the relative magnitude of the measured rainfall intensity and runoff
rate as depicted in Figure 29. In other words, the measured runoff
rate for this storm appears to be too small at Layton site in comparison
with those obtained from Parleys site No. 1 (see Figures 25 and 27),
despite the fact that approximately half of the inlet discharge at Layton
site is contributed by runoff coming from the roadway. However, the
opposite tendency in the measured hydrograph is found on the other storm
investigated. This seemingly indicates a data-collection problem at
flume LW=-1.

The May 26, 1973 storm at Layton site. For the storm, as shown in
Figure 31, the measured runoff rate at flume LW-1 looks larger than that
for the September 5, 1972 storm. Two I, values were assumed and the
corresponding hydrographs computed, as shown in Figure 32, for comparison.
None of them fits well the measured hydrograph. Disagreements between
the measured and computed hydrographs may be attributed to one or a com-
bination of the sources of errcrs which were already given earlier.

The computer model so developed is of course not perfect as many
difficulties are yet to be solved, but it has been demonstrated that it
is accurate enough for practical purposes. In the following section,
the model will thus be used to study runoff from typical urban highway
cross~sections under idealized stationary and moving storms, and thereby
to explore the feasiblity of developing standardized dimensionless inlet
hydrographs for design storms having any desired recurrence intervals.
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COMPUTATION OF RUNOFF FROM TYPICAL

URBAN HIGHWAY CROSS~SECTIONS

Accuracy of the computer model has only been tested for the limited
cases in which field data are available. From the results obtained from
such limited tests, it has been shown that the model can simulate, within
practical tolerance limits, the actual hydrograph, should aprropriate or
average hydrometeorologic and physiographic data for the subject water-
shed be given. There seems no way to know, however, whether the model can
also accurately compute the inlet hydrograph for other cases in which
field data are not available, without resorting to some kind of computer
experiments. Time did not permit computer experiments to be performed on
all possible cases. Those which were tested in this study are some ideal-
ized, hypothetical cases which are nevertheless believed to be essential
to the subsequent development of non-computerized, dimensionless inlet
hydrographs for highway engineers. Suffice it to say that while continu~
ing efforts will be made on the collection of valid field data as well as
the modifications and improvements of the present computer model, the
appraisal of the results obtained from the exploratory computer experi-
ments must also be in order. It is hoped that sensitivity analysis made
by varying some significant parameters through the computer model will
lead to the ultimate generation of design parameters for computing desired
inlet -hydrographs.

Four typical highway cross~sections provided by the Federal Highway
Administration, as shown in Figure 33, approximately represent those found
in the major urban and suburban interstate highway system. Among them,
type 1la (Figure 33a) is similar to the one at Layton site (Figure 24a)
which was already examined. Also examined extensively is the one at
Parleys site No. 1 (Figure 24b) which is only a ‘‘sideslope®’ part of type
la or type 2b (Figure 33c). Parleys site No. 2 (Figure 24c) consisting of
a curb-type gutter could not be examined due partly to invalid field data
and partly to difficulty in making the computer model operational under
such small storms, as mentioned previously. It appears that the latter
site corresponds to a ¢‘roadway’’ part of type 1b (Figure 33b) without
paved shoulder or type 2 (Figure 33c¢c). Since this part of the highway
cross-section is the most common in urban highway traffic that requires
more due attention as far as the inlet design is concerned, runoff from
the roadway with or without paved shoulder under hypothetical heavy storms
must be thoroughly investigated. Note that the present approach of com-
puting runoff from the roadway with paved shoulder is technically treated
the same as that from the roadway without paved shoulder. Therefore, for
simplicity, only runoff from the roadway without paved shoulder is studied
herein.

105



]

e
;

T e

; frlat “~paves Surfdee { Biluminous j-——

Modian
Birip

00 te 200 i Right of Wey

X3 . B eo D . ' N
e f i . 12 o 24 10 . 2 or 24t ¢ 12f. 14’y Paved slope (I11)
S R
P © 1 ] Hosgway {Coagrste or Bituminous ) Paved l Grass clops
f ] @ 15 ¢ Cross Siopa . Deteil see Fig. 6 Shoulder (0.5% to 1.5:1)
y vE 1T E Longitudingt Slops . ey
E ¥ e Minimum - 0.5%
; -’"g); § %"@ Maximum ~ 5%
RN
v /M%

Cross Siope | 3 to 8%, but must be
graater than thet of the necrest lune

a. Typicatl Highway Cross-section of Type la.

L 100 fo0 200 ¢5. Right of Way
| s 2 or 24 13, 4 i2or 24 91 | 2 13', ~ Paved slops (111)
= 7z o
iPev@d Rogdway (Conceete or Bijuminous ) 7] Paved Grass siopae
Crose Slopa | Datail ses Fig. 6 Shouider (0.5% to 1.5 1)
I oy . 1
i L.ongitudingl Sicpe . -
! Minimum - 0.8% £
i Maximem ~ 3% 3

\qusd Surfece { Bituminous )

Guttar
Slops . 1/12

Croes Slope . 3 90 5%, but must be

Medion greater then that of the nsarest lane

Stri , .

F b. Typica! Highwey Crose-section of Type ib.

2
L 10G to 200 ft. Right of Way
4 3 120r24 1. |12 or 24 14, 13 (2] & | Paved siope {1:1)
l§ Roadway {Concrats or Bituminous } s Grazs slope o\/
-g Crowe Slope . Detail see Fig. 6 g (0.5% to 1.5 ::)6\\-@0 g
| . Loagitudinal Sleps © . g ot
"§ o Minimum - 0.8% 8 °
Ig slé Moximum - 5% :;3 2
i

Figure 33.

Gutter Detail
{Grass or Paved)

.Curbk & Guiter Detail
¢. Typlcal Highway Cross-sections of Types 2a, & 2b.

Schematic diagrams of typical urban highway cross-sections.

106



‘Runoff from Roadway with Curb-Type Gutter

The computer model was used to study the effects of the different
parameters on the inlet hydrograph. The parameters studied are: gutter
slope, gutter length, cross slope of the roadway, roadway width, rainfall
intensity, and direction of the moving rainstorm. Ten different computer
runs (Table 3), were conducted and the effects of the aforementioned
parameters on the inlet hydrograph were determined. The common hydro=
meteorologic and physiographic data input in the computer model are:

v = 1.21 x 1072 ftz/sec, ® =0, A= 28,5 fps, § = 0.1575 in., k = 0.0034%
ft for paved surface, T, = 1 ft, and i = 0 in./hr.

The gutter flow is divided into 4 sections with distance interval
As taken as large as 100 ft for all rums except run 4 which has As = 250
ft. The horizontal width of each lane, 12 ft, (Figure 6) is divided into
three sections with the horizontal distance interval, Ax, for overland
flow equal to 4 £t so that all the runs except for run 5 have eight grid
points on the roadway.

The selection of the time intervél, At, is programmed in the same
way as mentioned previously. In other words, At is chosen between the
values obtained from Eqs. 48 and 149, whichever is smaller.

In Table 3, the values of input parameters for run 1 are arbitrarily
selected as ‘‘standard’’ ones and subsequently changed to other possible
values, one at a time, for each of the other runs. For example, the gutter
slope in run 1 is changed from 5 percent to 0.5 percent (i.e., under-
lined in Table 3) for rum 2 while the remaining parameters in run 2 are
all kept the same values as those used in run 1, and so forth. Because
there are too many factors which may affect the inlet hydrograph including
those which are currently under consideration, the sensitivity of its
response (i.e., hydrograph) to the variation of any input parameter value
can only be studied in such a tedious way. All the computer runs were
executed on UNIVAC 1108 and analyzed. There is a tremendous amount of
computer output at different time levels for each run, including velocity
and discharge distributions, flow profiles, Reynolds and Froude number
distributions, friction coefficient and slope distributions, and so forth
(see, e.g., sample output in Appendix 4). These output data are helpful
to the study of the mechanism of water movement on the roadway under a
stationary or moving rainstorm. One may be interested in plotting the
building-up or receding flow profiles on the roadway at various sections
and in the gutter at different time levels. Some of these were already
conducted by Chu (1973) using the same computer model, but in a rather
limited version of capability, developed in the early stage of this re-
search. Since our main thrust of this research is to develop the inlet
hydrograph, analysis of many flow characteristics other than hydrograph,
are not further pursued herein.
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Table 3. List of the values of different parameters used in computer experiments.

Gutter Cross slope Gutter Roadwayv Rainfall Storm front Moving storm
Run slope ‘ of roadway length width intensity velocity®#® " direction
(%) (max., or min.)* {(ft) (no. of lanes) {in/ht) (mi/hr) (in parallel with;

1 5 max. 400 2 20 o -

2 0.5 max. 400 2 20 o -

3 5 min. 400 2 20 o -

4 5 max. 1,000 2 20 0 -

5a 5 max. 400 1 20 oo -

5b 5 max. ) 400 3 20 © -

5¢ 5 max. 400 4 éO w -

6 5 max. 400 2 S o -

7 5 max. 400 2 20 + 0.136 overland flow
8 5 max. 400 2 20 ~ 0.136 | overland flow
9 5 max. | 400 2 20 + 0.682 gutter flow
10 5 max., 400 2 20 - 0.682 gutter flow

*The values of the coordinates used in the maximum and minimum cross slopes of the roadway are
shown in Figure 6.

**Infinity sign """ means a stationary rainfall, positive sign means in the direction of flow, and
negative sign means in the opposite direction of flow.



The dimensionless inlet hydrograph, Qx (= Q/AgVo) versus tu (= tVg/Lg)
for all runs except for run 9 (which failed for unknown causes) are plotted
in Figure 34 for comparison. For convenience, rainfall for run 1 through
run 6 was made to stop arbitrarily at tg = 5, which thus gives all runs
various time durations of rainfall, ty, in minutes because of the differ-
ences in the normalizing quantities Ay, V,, and L, used in each run (see
Table 4). Obviously, even by ty, some runs have not reached the theoreti-
cal equilibrium state yet, aside from the possible numerical errors in-
volved in the computation.

Accuracy of the computed hydrograph

To examine the accuracy of the computation without resorting to field
data, the theoretical point in the hydrograph has always been checked.
This is the theoretical equilibrium state at which runoff rate in a di-
mensionless form, Qx, must be equal to unity under a stationary, prolonged
uniform rain. Any deviation from this theoretical value for the rain
lasting more than the time of concentration may be attributed either to
the flow characteristics of runoff in question or to computational errors,
or both. An inspection of run 1 through run 6 in Figure 34 reveals that
only run 3 which has the minimum cross slope of the roadway (Table 3) has
reached the theoretical equilibrium point. A further examination of the
computer output for all runs reveals that run 3 is the only run with the
major portion of the runoff on the roadway fallen in the subcritical flow
range. This finding confirms our earlier statement in connection with the
accuracy of the overland-flow submodel that the adverse effect of gravity
on the computational stability and convergency worsens with the increase
in the Froude number.

The time durations of rainfall for run 5a and run 1 which have only
one~lane and two=-lane traffic, respectively, should be long enough for
runoff to reach the theoretical equilibrium, should there be no computa=
tional errors. Apparently there are numerical errors, about 3 to 4 per-
cent, in the computation of run 1 and run 5a., Other rumns such as run 2
which has a smaller gutter slope, run 4 which has a longer gutter reach
to the inlet, and run 5b and run 5c¢ which have more traffic lanes, all
in comparison with run 1, do not quite seemingly reach the theoretical
equilibrium discharge by the time rain stops (di.e., ty, = 5 or dimensional
time thereof for each run as listed in Table 4). From the errors in=-
volved in the computation of run 1 and run 5a, it is estimated that the
computational errors in those runs should not exceed more than 3 to 4
percent.

The difficulty in computing runoff resulting from a light storm with
the rainfall intensity as small as 5 in./hr or less manifests itself in
an unstable hydrograph such as computed for run 6, as shown in Figure 34.
One of the most difficult parts in the runoff computation using the pre-
sent model is the computation of the internal boundary where overland
flow meets with gutter flow. Since the internal boundary moves from time
to time, a slight error in the computation of the location of the internal
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Figure 34. Computed dimensionless inlet hydrographs for runoff vfrom roadway with curb-type gutter
under stationary and moving rainstorms.



Table 4. Normalizing quantities AO, V , and Lo and time duration of rainfall, t,, used in the
computation and construction of dimensionless hydrographs for all runs shown in Figure 34.

Run
1 2 3 4 5a 5b 5c 6 7 8 9 10
A0 0.362 0.734 0.362 0.634 0.253 0.453 0.534 0.155 0.362 0.362 - 0.362
(£t%)
Vo 13.81 6.82 13.81 19.68 10.98 15.92 17.66 8.02 13.81 13.81 - 13. 81
(ft/sec)
- Lo 400 400 400 1000 400 400 400 400 400 400 - 400
T (£e)
td 2.42 4.89 2.42 4,24 3.04 2.09 1.89- 4.16 - - - -

(min.)




boundary would also propagate upstream and downstream in the gutter, re=
sulting in the subsequent computations with unrealistically too high or
too low gutter flow depth and velocity. The small intensity is probably
one among many reasons, runoff at Parleys site No. 2 could not be computed,
as mentioned previcusly. No attempt was made in this study to refine or
improve the computation of the internal boundary under a light rain, but
it must be made in the future if the capability and applicability of the
present model will be broadened.

The computed hydrograph for run 7 represents the response of the
roadway to a uniform storm with a storm front moving at velocity W = 0.136
miles per hour in the direction of overland flow. Theoretically speaking,
when the equilibrium state for run 7 is reached, it must have the same
theoretical equilibrium discharge as run 1 because both runs have the
identical physiographical and hydrometeorological inputs at the equili-
brium state. Therefore, run 7 has approximately the same accuracy of com=-
putation as run 1, as shown in Figure 34. The computed hydrograph for run
8, which has a storm front moving in the opposite direction of overland
flow, starts earlier, but has a less steep slope than that for run 7.
Finally, at the equilibrium state, run 8 alsoc has approximately the same
accuracy of computation as run 1 and run 7. as shown in Figure 34.

For run 9, the writer has failed to get the desired solution, as
mentioned previously, so that it cannot be shown in Figure 34 for compari=
son. While a continulng effort is still made to solve it at the time of
writing this report, it is worth pointing out here that the failure may
be caused either by a large distance interval (i.e., 100 ft) adopted in
the computation or by a similar problem encountered 'in the computation
of the internal boundary at the wave front, or both. A large distance
interval causing trouble in the computation is also reflected in the com-
puted hydrograph for run 10. Each of the hydrograph humps shown in Figure
34 for run 10 represents an addition of a grid point in the computation
in response to the current position of the storm front. There is a total
of five humps corresponding to the five grid points taken in the computa=
tion. The humps can be eliminated or smoothed out either by adopting more
grid points or by refining the numerical scheme at the wave front. The
latter method of improvement seems to be more practical than the former in
terms of the less computer time required in the computation. At the equi-
librium state, run 10 also reaches the same runoff discharge as run 1.

Development of dimensionless
inlet hydrograph

For run 1 through run 6, despite the significant difference in the
values of the parameters tested, their normalized inlet hydrographs look
very similar to each other except for apparent time lag among some of
them. If the normalizing (or reference) quantities can be chosen in such
a way that they can represent more the overall flow characteristics, then
these normalized inlet hydrographs can be collapsed much closer than what
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is shown in Figure 34. For instance, the reference length can be chosen
to be equal to the summation of the gutter flow length and overland flow
length. Although Chu (1973) has replotted the normalized hydrographs for
run 1 through run 6 using the latter reference length, small spreads among
the runs do not seem to warrant much improvement of the newly=-plotted
hydrographs over those shown in Figure 34. In the future, if more data on
the computed hydrographs generated from a variety of ranges of the values
of the input parameters such as those related to design storms (Chen,
1975b), soil infiltration capacity (Chen, 1975¢), and initial abstraction
(Eq. 151) are available, the construction of dimensionless design hydro-
graphs, similar to Figure 34, for the four typical urban highway cross-=
sections (Figure 33) seems possible.

Regarding the inlet hydrograph due to a moving rainstorm, the con=-
struction of such a dimensionless hydrograph would be more complicated
than that presented herein. It is conceivable that if the storm front
in overland flow direction outraces the wave front, the inlet hydrograph
for run 7 must differ with that for run 1 by merely a time lag which
accounts for the time needed for the storm front to move from the upstream
end of overland flow to the downstream end of overland flow. On the other
hand, if the wave front outraces the storm front, the situation will be
somewhat different from what was just described above, of course, de-
pending upon the speed of the storm front. As shown in Figure 34, the
effect of both direction and magnitude of the moving storm on the inlet
hydrograph is quite significant. As a matter of fact, the inlet hydro-
graph for run 1 actually represents the one for the storm front velocity,
W, approaching infinity (Table 3) and the abscissa of the hydrograph,
where Q4 = 0, represents the inlet hydrograph for W = 0. Hence, the area
enclosed by the abscissa and the inlet hydrograph for run 1 is the domain
of the inlet hydrograph in which the moving rainstorm has a storm front
velocity varying from zero to infinity. Therefore, in addition to the
normalized quantities, unless some kind of a moving and deforming time
coordinate system is adopted to adjust for such a wide variety of Q,
versus tx areas, the development of a unified dimensionless hydrograph
for a moving storm seems unlikely.
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SUMMARY AND. CONCLUSTIONS

The mathematical model which consists of a set of flow equatiomns,
initial covnditions, and boundary conditions, is developed for a combined
overland and gutter flow., Based on the laws of the conservation of mass
and momentum, the one-dimensional spatially-varied unsteady flow equations
are formulated to simulate such flow and then solved numerically on a
digital computer subject to prescribed initial and boundary conditions.
Several assumptions and approximations were made in the formulation of
the mathematical model. The major ones made are as follows:

1. In the derivation of the momentum equation, Eq. 17c, two mo-
mentum correction factors, B and , are introduced to account for the
velocity distributions of the main flow and the lateral inflow, respective-
ly. The actual values of 8 and . cannot be determined. In wide open
channels, the momentum correction factor g has a theoretical value of 1.2
for laminar flow and 1 + 0.78125f for turbulent flow, where f is the Darcy-
Weisbach friction coefficient. TFor simplicity, the values of the momentum
correction factors used in the present study are assumed to be unity. The
computer sclutions for several different rainstorms indicate that within
the range of different parameter values used, no significant differences
occur for B’s ranging from 1.0 to 1.2 (for laminar flow) or to 1 + 0.78125f
(for turbulent flow).

2. The value of the Darcy-Weisbach friction coefficient, f, is dif-
ficult to determine, but can be approximated by using Egs. 19, 20, and
21. TFor turbulent flow on the rough surface, Eq. 19 can be used to
evaluate the f valuve. However, if the depth of flow is almost of the same
order of magnitude as the roughness size or less, Eq. 19 in terms of
the logarithm of the relative roughness (R/k) may not be valid. Whether
or not Eq. 19 is valid under such small flow depth must be checked by
experiment.

For laminar flow, Eq. 21 is used to evaluate the [fvalue. To avoid
difficulty in the computation, the flow is treated as laminar when the
hydraulic radius, R, is less than a certain value, denoted by ek. The
value of ¢ is unknown, but presently assumed as unity. The value of C
in Eq. 21 is evaluated in terms of channel slope, S, as expressed by
Eq. 82. The coefficient and exponent in Eq. 82 were experimentally
determined for natural turf surfaces.

The results obtained from the computer experiments indicate that the
flow often falls in the transition region (i.e., partially laminar and
partially turbulent), a region in which none of Eqs. 19, 20, and 21
should apply. This failure in the accurate evaluation of the friction
coefficient may sometimes result in computational instability, as men-
tioned previocusly. Although Eqs. 19, 20, and 21 were used throughout
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the present analysis, a more accurate formula should be formulated to
evaluate the friction coefficient in the transition region.

The flow equations so formulated are expressed in the form of a set
of quasi-linear partial differential equations. This set of the equations
was solved numerically by using an explicit finite-difference scheme with
specified rectangular grid intervals based on the method of character=-
istics. A special technique by use .of a pair of shock equations and
characteristic equations was developed for tracing a bore or a train of
such bores.

For solving the conjugate depths and velocities at the discontinuity,
the internal boundary condition, Eq. 100, must be solved simultaneously
with both Ct - and C~ - characteristic equations on the front side of the
discontinuity and only one, either ¢t = or C" = characteristic equation,
on the back side of the discontinuity. With the help of Eq. 109, this
numerical technique was applied in tracing the wavefront moving on a dry
surface due to a moving rainstorm.

The mathematical model developed. in this study was programmed in
FORTRAN language and executed on the UNIVAC 1108 computer. The computer
model, including a main program, 38 subroutine subprograms, and 2 function
subprograms, has been verified to be accurate enough for simulating over=
land flow as well as a combined overland and gutter flow under a station=
ary or moving rainstorm. Although there are several limitations in the
computer model, the model is generalized so that it can be applied to any
runoff routing problem on the highway cross-section -including roadway,
shoulder, sideslope, gutter, etc. The limitations such as the uniform
cross slope of the roadway and the direction of a moving rainstorm re-
stricted in parallel to or perpendicular to the direction of the gutter
flow, can be removed, if desired, in a future study.

The proposed model computes not only the flow profiles, velocity
distributions, discharge distributions, top width distributions, Froude
nunber distributions, Reynolds number distributions, and friction slope
(or coefficient) distributions, but also the locations of moving critical
sections and bores, if any.

In the initial stage of the hydrograph when the velocity and hydrau~
lic depth are small, the value of the time interval, At, is chosen from
Eq. 48 or 149, whichever is smaller. Equation 149 was formulated by
experience and is believed to be suitable for this type of the initial-
value problem within the range of data input. Nevertheless, the time
interval selected for circumventing the computational instability, especial-
ly in the initial stage of the hydrograph, needs further investigation.

The accuracy of the mathematical model was tested by. comparing the
computed hydrographs with field data under various physiographical and
hydrometeorological conditions. For lack of available field data on run-~
off from the roadway with curb-type gutter, the model was also tested
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under some hypothetical storm and drainage conditions. It was found that
rhe initisl sbstraction played an important role in the simulation of

actual inlet hydrographs. The accuracy of the model is believed to be
goed enough for most practical purposes.

For improving the accuracy of the present mathematical model, the
assumptions and approximations made in the evaluation of the friction co-
efficient, in the formulations of the initial conditions and internal
boundary conditions, and in the arvangement of the numerical computational
procedures must be refined or removed. Of course, some assumptions and
approximations used require an experimental verification.

The computer solutions indicate that under the condition of uniform
stationary rainfall, the effects of the parameters, such as the gutter
slope, gutter length, cross slope of the roadway, roadway width, and rain-
fall intensity on the normalized inlet hydrograph are not significant, as
shown in Figure 34. Therefore, if the reference quantities used to nor-
malize the discharge and time are adequate, a unified dimensionless in-
let hydrograph under a uniform stationary rainfall condition looks very
promising. By the same token, if more data on the computed hydrographs
generated from a variety of ranges of the values of the input parameters
such as those related to design storms, soil infiltration capacity, initial
abstraction are available in the future, the development of dimensionless
design hydrographs, similar to Figure 34, for typical urban highway cross=-
sections seems possible.

The effects of the velocity of a moving rainstorm on the normalized
inlet hydrograph are significant. The development of a unified dimension-
less hydrograph for a moving storm does not look promising. However, be-
cause the range of influence of the velocity of the moving storm on the
normalized hydrograph is clear, one may be able to obtain the desired
hydrograph by interpolation or extrapolation.
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RECOMMENDAT IONS

The principal future work recommended for the further investigations
of computer modeling and analysis of runoff from typical urban highway
cross-seéctions is as follows:

1. The computation of low flows under light storms is very diffi-
cult using the present method of solution. It sometimes failed due partly
to inaccuracy in the evaluation of the friction coefficient and partly to
computational instability induced by the internal boundary computation.

For lack of a better method available in the computation of such low flows,
it has been simply assumed that the flows are laminar and the uniform flow
equation (Eq. 83) applied. However, it has been found during the model
validation tests that such an assumption may cause large errors in the
computation. An effort must be made on the improvement of the computa=
tion for such low flows.

2. The unstable results shown in the computation of runoff under a
storm moving in the opposite direction of gutter flow can be overcome by
refining the current numerical scheme in use at the storm front. This
refinement may also help solve the difficulty experienced in the computa-=
tion of runoff under a storm moving in the same direction as gutter flow.

3. It has been shown from the model validation tests that the initial
abstraction is probably the most important, single factor which may greatly
affect the computation of the entire inlet hydrograph. Unfortumately it
happens to be the most difficult, unknown quantity to deal with in the
mathematical modeling. For the future modeling of the surface rumoff,
more attention should be paid on the evaluation of the initial abstraction.

4. Efforts must be made on the development of a unified dimensionless
inlet hydrograph or a family of such hydrographs for typical urban highway
cross=sections. This can be readily done by analyzing the computed hydro-
graphs generated from the present or modified computer model by inputing
a variety of ranges of the values of the parameters such as those related
to design storms, soil infiltration capacity, initial abstraction, etc.
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Appendix 1

Evaluation of the Momentum and Energy Coefficients

Laminar flow

The modified velocity distribution over the flow section for wide
open~channel flow is given by,

_ 24gS 1.2 '
u " C\) (Zd 2 Z > . -' . . . - . . . . . . (153)

in which u is the velocity of flow in s-direction, S is the channel slope,

v is the kinematic viscosity, and d is the depth of flow. The mean veloc=
ity of flow, u, can be calculated from Eq. 153 as

ll—jdud—-—‘g\—[*gi( --;_—zz)dz e « « « .« (154a)

o - 888 2 ‘
u oy . . e . (154b)

u

or

Therefore, the momentum coefficient, B, can be given by
d, \2 d 2
B=é—§ (-%) dz=——-—12—-—5‘[%%§(zd-;—zz>j} dz
o\u (833) 5 Y0
d
Cv

e+ « + « &« « « « 4 (155a3)

or

B = 1.2 v v v e e e e e e e o ... . o (155DB)

d 3 d 3
o = :1—§ (—-li—) dz 1 S\ [24&5 (zd - ;—z2>] dz
G 805 Cv
0 d 0

e ¢ + o « s +« e « (156a)
or ,

a = 1.543 . . « « « « « (156b)
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Turbulent flow

The velocity distribution for turbulent flow on smooth surfaces is
given by the Kdrmin-Prandtl logarithmic equation,

T fp =z
Y = 2,5 1p —2
AY)

"ro/e

+ 5.5 e e e e e te o . . (157)

in which p is the mass density of fluid and L is the boundary shearing
stress, which may be given by
-2
f pou
4 2 @ ® L L E © L] * L] . © L © ‘. - - (158)

T‘=
(8]

in which {f is the Darcy-Weisbach friction coefficient. The mean,velocity
of flow is

- ¢ 4 1 ¢ t./0 2
u = E-f; u dz = E}g Vro/p' 2.5 1n S+ 5.5{dz . . (159a)
0
or
- vt /o d
u = Vto/p 2.5 ln-—~—;—~—-+ 3 e« + « e« e« s+ « + (159D)

\

The velocity distribution for turbulent flow on rough surfaces is
also given by the Karmin-Prandtl logarithmic equation,

—2—= 25 F+85 . . . . . . . . . . . . (160
v/t /o
in which k is the roughness size. The mean velocity is
- 1 d 1 d z
u =E§ udz=€§ VTo/p (2.5 in E+ 8.5) dz .« .« (161a)
0 0

or

w=Vilp (2:.51n—%+6> P €T 1)
Subtracting Eq.16lbufrom Eq. 160, or Eq. 159b from Eq. 157, yields

B e 2551 2425 . . . . e e e e e e .16
To/p

]
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"Eq. 158 can be rewritten as

‘o f

—_— = [

5 8 B € )

Substituting Eq. 163 into Eq. 162 gives

u £ I .z
;—1+2°5m/8_+2'5m/:1nd'""'7"'(164)

Therefore, the momentum coefficient, B, for turbulent flow on both smooth
and rough surfaces can be expressed by

2 2 .
_1 (d/u 1 d f f z
6—35 (—E—-) dz—-&-S\ (1+2.5ﬁ+2.5ﬁ1m€ dz
0 - 0
e e e e e e e e e e« e+« . (165a)
oY
B = 1 +4+0.78125f . . +« + « « « +« « « « « .« .« (165b)

Similarly the energy coefficient, o, for turbulent flow on both smooth
and rough surfaces can be expressed by

a=é—§d<—l‘i_——)3 dz=l—§d 1+2.5ﬁ+2.5ﬁ1n%3dz
0 0
e e e e 4« « 4« s« .+ . (166a)
or
a=1+2.34F -1.381 £72 . . . . . . . . . . . (166b)
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Appendix 2

Expressions of Geometric Elements for Curb=Type
Gutter Flow Section ‘

An inspection of a typical urban highway cross=-section reveals that
only 3=-ft horizontal width is provided for each curb-type gutter flow
section which is built adjacent to the roadway or paved shoulder with
various horizontal widths. During a heavy thunderstorm, however, the
downstream reach of the 3-ft wide gutter does not appear wide enough to
accommodate the suddenly rising level of overflowing storm water and a
portion of the paved shoulder and/or roadway tends to be subjected to the
encroachment of flooding gutter flow. Thus, for completeness in, the
description of gutter flow, every point on the roadway crown and across
paved shoulder will be regarded as a potential boundary point of the
gutter flow and the corresponding geometric elements expressed according
to the position of the internal boundary. Three different cases of the
internal boundary position are treated herein.

The gutter flow boundary is assumed to be composed of three parts,
as schematically shown in Figure 35. The left part is the crown of the
roadway (Figure 6) with the horizontal width, L.g, the middle portion is
the surface of the paved shoulder with the horizontal width, Lpgs and the
right side is the boundary surface of gutter with the horizontal width,
Lgu. The hydraulic depth, D, will be used as a reference quantity in the
definitions of the other geometric elements so that it must be expressed
in terms of the given or specified geometric element in addition to the
top width, T. For example, if the cross=sectional area, A, is given, D
will be expressed in terms of A and T.

Case (1): T = Lgu

1. Given A, the cross~sectional area, find D.
= A
D—T.................(167)

2. Given hch’ the gutter flow depth, find D.

- 1
D = hCh > T tan 62 e e e e e e e e e e e < (168
3. Given R, the hydraulic radius, find D.

= R 1
D = 1 - R/T <‘Z‘ t-an 62 + sec 62) . . . . - . . . (169;
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Case (3) %: - T -

FF———————— L ————————a+§—————-L ————«>+n——-L —
rs ps - gu

Case (1) F;T—’
Case (2) i“‘—_‘——— T "“—““"

Paved Shoulder Gutter

p~Water surface

ch

rs
ps
gu
pPs

h
gu
Case (1)

Case (2)
Case (3)

=N R N o R R =

AR RN RN VY

gutter flow depth

top width of gutter flow
horizontal width of roadway
horizontal width of paved shoulder
horizontal width of gutter

L tan 6
ps 1

Lgu tan 82

T<1L

gu
L STSL _+L
gu ps  gu
Tz L _+1L

ps  Tgu

Figure 35. Schematic diagram of gutter flow with various locations
of internal boundary.
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4, Given h find h, the depth of the centroid of A, in terms of hch

S
and T. ch
Qo (hch = T tan ez) + T tan 92 (hch - §-T tan ez) (170)
(thh = T tan 92) .
Case-(2):t Lgu ST = LPS + Lgu
1. Given A, find D.
A : . _
D= T e e e e s e i e e s e e e e . e (167
2. Given h ., find D.
c
Cgu
D= 5T (2hCh - Lgu tan 92)
(T -~ L u) )
+ ——S——ZT [2hch - 2LgUl tan 6, = (T = Lgu) tan 61]
T AN
3. Given R, find D.
R [(T B %Lgu) T- ngu
D= TR T Lgu tan 62 + o7 (T - Lgu) tan 91
+ Lgu sec 62 + (T = Lgu) sec 61] e e e e e e e (172
4, Given h ., find h.
cl
h = {L (h, =L tan 6 )2 + L 2 tan 6, (h , = g-L tan 68,.)
gu  ch gu 2 gu 2 ch 3 "gu 2
: 2
+ (T = Lgu) [hch - Lgu tan 62 - (T - Lgu) tan 61]
2 2 ‘
+ (T = Lgu) tan 81 [hCh Lgu tan 62 3 (T Lgu) tan 61]}
< {Lgu (thh - Lgu tan 62) + (T = Lgu) [thh - ZLgu tan 62
- - e e e s e e e e e e e 173
(T Lgu) tan 6]} (173)
Case (3): T = Lps * Lgu

1. Given A, find D.
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= A

D= T e e . e . e . . « e e . . e R .
2. Given hch’ find D.
L u L s
D= —g"_zT (20 = L, tan 8)) + —LZT (2h, -2L, tan 0,
A (T - L - )
- L tan 6,) + s ps gu }
ps 1 T+ T (hch Lgu tan 0
- LpS tan 61 - hrs) . e e e e e e e

. (167)

. (174)

in which Ay is the hatched area, as shown in Figure 35, defined by

using Egq. 60 as

LI'S
As = 51 ‘ (-z)dx
L _+L _+L =T
rs ps gu
L
= - -13—C1x3+;—C2x2+C3x s
rs

L +1L

+ L

Ps

- T

gu

. (175)

The quantity, hyg, is the summation of the drops in height, a, b, and c
in Figure 6 for each lane of traffic according to the parabolic equation,

Eq. 60, and defined as

0
_ 2
hrS = C1x + sz + C3 . . . . e e e e . (176)
rs
3. Given R, find D.
1 1
(T =-5L_) (T = 3Ly~ Ly)

. _R 2 “gu 2 "ps gu’

D T-R T L__ tan 62 + T LpS tan ©
(r-L =1L ) A
+ ps___8u S
T hrs + Tt L, sec 62 + LPS sec 61 + s

.

. Q177



in which s is the actual width of roadway, as shown in Figure 35 and
defined in Eq. 61.

4, Giveg h,,» find h.
= 1 2.1 2 2
=| = - > -5 0
h 5 Lgu(hch Lgu tan 62) +5 Lgu tan 62(hch 3 Lgu tan 2)
+1—L (h, = L. tan 6, = L tan6)2+lL 2tane(h
2 “ps* ch ps 1 gu 2 2 "ps 1 " ch

2 1
3 Lps tan 61 Lgu tan 92) + 7 (T LpS Lgu) (hch LpS tan 61

2
- Lgu tan 62 hrs) + As (hch LpS tan 61 Lgu tan e2
— Lgu Lgs f
- hrS + hs) 3 5 (2hch - Lgu tan 62) + 5 (thh

- 2Lgu tan 62 = LpS tan 61) + AS + (T = LpS - Lgu)(hch

- Lgu tan 62 - Lps tan 61 - hrs) e e e s e o« . 178

in which B_S is the depth of the centroid of AS from the top edge of AS and
defined by

- _ 1125 1 & 1 2 3 2
hS = C1x + 2 C102x + 3 (C2 + 2C1C3)x + CZC3x
2 Lrs
+ 03x + AS e e e e w e e e (17D
+ L + L = T
rs ps gu
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Appendix 3

Theoretical Evaluation of Initial Abstraction

by Using the SCS Rainfall-Runoff Relation

It seems reasonable to assume that the SCS rainfall=runoff relation
may have the following general form: :

Q= cP T € K1)

in which Q = actual direct runoff in inches, P = total storm rainfall
in inches, and c = “‘runoff’’ coefficient. The way in which Eq. 180 is
constructed is similar to that of the rational formula in which instead
the rainfall intensity is related to the peak runoff rate through the
runoff coefficient.

One of the primary assumptions in the SCS method is

FoQ
57 % R G E:10

in which F = actual infiltration excluding the initial abstraction, I,
in inches, S = potential infiltration in inches, and P, = potential rum-
off or effective storm rainfall in inches, i.e.,

Po = P - I, N e )

and
P=I,+F+Q . . « < .+ .+ < « . . . (183

Substituting Eq. 182 and the expression of F from Eq. 184 into Eq. 181
yields
@ - 1)°
Q = —-———-——-P- Ia+s for P > Ia ‘. . . . . . . . (184)

Note that the limitation, P > I,, is imposed because Q in the form of
Eq. 184 is not valid outside the limitation.

If an assumption on I  is made, Eq. 184 can reduce to the well~known
rainfall=runoff equation tﬁat is related to CN by the definition

_ 1000 B
N = 55 N ¢ F-5))
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) The initial abstraction, I_, consists of interception and surface
and subsurface storage, all of which occur before runoff begins. To
remove the necessity for estimating these variables, the relation be~
tween I, and S (which includes I) was roughly assumed by the SCS through
rainfall-runoff data for experimental small watersheds less than 10 acres
in size as

I, =0.28 R € 115

Although Eq. 186 has a large standard error of estimate, it was assumed
valid in the SCS method for lack of any better relationship. In a more
generalized treatment, it may be assumed herein that

Ia«= AS . o o . . . . . . . (187)

in which A = ratio of I, to S with its value ranging between 0 and 1.
For brevity, A may be referred to as the initial abstraction index. Sub=
stituting Eq. 187 into Eq. 184 yields

(@ - A8)>

Q= m for P 2 AS . . . o . . . (188)

The solution of Eq. 188 for S in terms of P and Q is

S = _1.2. [2AP + (1 - 2)Q = YV &xPQ + (1 = AH)QZ] . . . . (189)
2X

Note that the expression of S for A = (0.2 was already developed by
Hawkins (1973). Substitution of the Q expression from Eq. 180 into Eq.
189 gives

S = %—f(x, S 2R € 11))
in which
£\, c) = E%—[n + (1= Ne - Ve + (A - 022 .. a9

Hence the expression of I in terms of a fraction of P is obtained by
incorporating Eq. 190 with Eq. 187 as

Ia = £(A, ¢)P . . . . . . . .. . . (192)

Upon substitution of the expressions of Q and I from Eqs. 180 and 192,
Eq. 183 yields the expression of F in terms of P as

F=g(h, c)P N ¢ LK)
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in which

g0y o =5 [=( + N+ ahe + (1 = N2 . . L (194)

Again, for brevity, f£(A, c) and g(A, c) may be called, the ‘‘initial
abstraction’?® coefficient and “iﬁfiltration”4coefficient,‘respectively.
For given A and c values, the values of f (), ¢) and g(i, c¢) (henceforth
abbreviated as f and g, respectively) can be determined from Eqs. 192
and 194, respectively.

From Eq. 191,

cf

N ETHA T D S 199)

Note that not any values of A, ¢, and f ranging from Q to 1 satisfy Eq.
195. Certainly there are restrictions on the A, ¢, and f values outside
of which Eq. 195 is not valid.

From the way in which Eq. 187 is constructed, the theoretical maxi-
mum value of X is unity. Therefore, from Eq. 191 or 195, one can readily
derive a relationship between ¢ and f under this limiting value for
A=1):

£=1-/c N 1)

or

c=( -0 . . . .. ... G

Equation 196 or 197 is plotted, as shown in Figure 36. For illustration,
the ¢ versus f relationships for other X values are also shown in Figure
36. It is obvious from Figure 36 that any point (c, f) within the area
enclosed by the three lines (i.e., Eq. 196, abscissa, and ordinate) is a
possible combination of the c¢ and f values which individual storms pass-
ing a watershed will produce. In view of an infinite number of combina-
tions of the ¢ and f values within the enclosed area, the A value com~
puted from Eq. 195 cannot be grossly assumed constant, even for the first
approximation, It is more logical to assume that for a given watershed,
there may be a statistical law under which certain combinations of the

c and f values occur more often than the other and vice versa. In other
words, a statistical dimension (or the probability of occurrence) for
each combination of the ¢ and f values should be evaluated so as to
determine the statistical mean (or average) value of A, which is essential
to the SCS method.

The distribution of the number of occurrence in the enclosed c, £
space can be represented by a density function, ¢(c, £), in this space,
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initial Abstraction Coefficient, f

Runoff Coefficient, ¢

Figure 36. Interrelationship between initial abstraction index, A,
runoff coefficient, ¢, and initial abstraction coefficient, f.
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having the property that ¢(c, ) dc df represents the number of occurrence
in the infinitesimal element dc df. To find the density function ¢(c, f)
usually requires a statistical analysis of a large amount of field data
on P, Q, and Ia which is unfortumately not available on non=recorded
basins. For convenience, however, if it is assumed uniformly distributed
with constant_density (i.e., equal probability of occurrence), the aver=-
age A value, A, can now be estimated by using Eqs. 195 and 196 as follows:

1 1 - /(—: Cf .
i S‘OS G- -c-f dedf |
A= = (198)

0
1 1 = Vo
j; 51 de df
0 0 )

It is_interesting to see that the statistical average value of X so
obtained (A = 0.25) does not differ greatly from the assumed 0.2 in the
SCS method. Both curves for A = 0.2 and 0.25 are plotted in Figure 36 forxr
comparison. Without knowledge on the exact expression of the density
function in the real situation, one can only conclude that for the aver-
age value of A being less than 0.25 (e.g., the assumed 0.20 in the S5CS
method) the probability of occurrence in the lower part of the enclosed
¢, £ domain from the line representing A = 0.25 must be higher than that
in the upper part of the same domain. '

PN
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Appendix 4

The Computer Program

1. Program Narrative

The methods and procedures of computing storm runoff from an urban
highway watershed, as described in the text, were programmed in FORTRAN
language and executed on the UNIVAC 1108 computer. The computer pro-
gram was originally written by Min-shoung Chu in June 1973 as part of
his dissertation. Since then, subsequent modifications have been made
by George €. Shih in December 1973 and later mainly by the writer in an
attempt to correct inaccuracies, ambiguities, and excessive limitations
found in the original program. Chu's program can only compute runoff
from a straight roadway with a curb-type gutter under a uniform station-
ary or moving rainstorm. Shih expanded it to include the computation of
runoff from a curved roadway. The final phase of the program, as ap-
pended here, has the capability of computing runoff from any of the
typical urban highway cross-sections (Figure 33), straight or curved,
under a time~ or space-varying storm, expressed by one of the hyetograph
equations, Eq. 126 through Eq. 136.

The computer program consists of a main program, 38 subroutine sub-
programs, and 2 function subprograms. Many commonly-used variables are
grouped in the COMMON statements. Some statements are self-explanatory,
while others which need clarification are further explained by means
of comment cards. The major options in the present program are as
follows:

(1) The computation of the shock waves, except at the wavefront

of a moving storm, was not executed in the present study by using
some control statements although it is included in the program.
Variables used in such -control are IFC in the MAIN program, IFA

in the subroutine INBDY, and IFC in the subroutine SLOPE. Present-
ly the program is set to TFC = 1 and IFA = 1, but to release the
control, set IFC = 2 and IFA 2. A subroutine subprogram ignored
in the computation of shock waves is NEWJ.

I

(2) Rainfall can be controlled either by specifying the value of
STR (dimensionless time for rain to stop) or by deleting statement
numbers 55 and 56 in the subroutine PARA. '
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2. Subroutines and Functions

2.1

Definition of the variables used

in the COMMON statements

COMMON / B1 /

Variable

B(1) B
B(2) ¢

B(3) g
B(4) 8
B(5) k
BG) o

B(7)
B(8)
B(9)

D O

=
oQ

B(10)
B(11)
B(12)
B(13)
B(14)
B(15)
B(16)
B(17)
B(18)
B(19)
B (20)
B(21)
B(22)
B(23)

o O

FPPEF Pohdd
O OO0 0O O

0o Q
[=n

bl ul e M
[a]
0

B(24)
B(25)
B(26)
B(27)
B(28)

PO U s =

Definition Unit
momentum correction factor -
a constant multiplier for the minimum depth,
ek, in Eq. (81) : -
momentum correction factor for lateral inflow -
reference angle of inclination rad
roughness size of gutter (grass or paved) ft
angle between terminal.rainfall velocity and
vertical direction rad
average diameter of raindrops in.
angle of inclination of bed slope rad
horizontal bed width of channel-type gutter
(2 ft) ft
reference top width . ft
reference length : ft
reference velocity ft/sec
reference friction coefficient -
reference Reynolds number -
reference depth of flow ft
reference hydraulic depth ft
reference hydraulic radius ft
reference cross-sectional area ft2
reference rainfall intensity in./hr
reference Froude number -
length of channel flow ft
horizontal width of traffic lanes ft

roughness size of roadway, reference surface,

or a surface under study ft
kinematic vicosity of water ft2/sec
terminal velocity of raindrop ft/sec
rainfall intensity in./hr
infiltration rate in./hr
carry-over discharge at the upstream end of

gutter cfs

143



Variable Definition Unit

B(29) q lateras inflow rate . cfs/ft
B(30) W velocity of a moving storm , ft/sec
B(31) hg/hpipn ratio of the conjugate depth of the discon=
' tinuity on region ¢°R’’ to the minimum depth -
B(32). a3 computer storage for rainfall 1nten51ty of
a moving sterm in./hr
B(33) Lg horizontal width of sideslope ’ ft
B(34) Sg slope of sideslope -
B(35) kg roughness size of sideslope ft
B(36) a parameter in C = aS” for paved surfaces -
B(37) b exponent in C = aSP for paved surfaces -
B(38) a parameter in C = aSb for turf surfaces ° -
B(39) b exponent in C = asb for turf surfaces -
B(40) Iy rainfall amount (depth) accounted for initial
detention and depression storage in.
Variable Definition
c(1) B momentum correction factor
C(2) siny
c(3) By momentum correction factor for lateral inflow
C(4) sin8, '
Cc(5) cosb,
C(6) sin(0+%)
c(?) ¢ concentration of raindrops
C(8) sinbd
C(9) cosb
C(10) Lg* normalized horizontal bed width of channel-type
gutter (Lg/Lo)
c(tt) L /(Docos 8o)
C(12) kopx normallzed roughness size of gutter (grass or paved)
C(19) ro/ (Vo x 12 x.60 x 60)
C(20) 1/F2
C(21) Lap normallzed channel length (Lgp/Lg)
Cc(22) Lpg* noralized horizontal width of traffic lanes (Lyg/Lg)
C(23) ks« normalized roughness size of roadway, reference surface,
or a surface under study (k/Ro)
C(24) ux normalized approaching velocity of lateral inflow (u/V,)
C(25) Ay normalized average terminal velocity of raindrops (A/V )
C(26) ry normalized rainfall dintensity (r/r )
C(27) iy normalized infiltration rate (l/ro)
C(28) Qux normalized carry-over discharge at the upstream end of
gutter (Q,;/AgVo)
C(29) qx normalized lateral inflow (qy, cos 94/DgV,)
C(30) Wk normalized velocity of a moving rainstorm (W/V,)
- C(33) Lgy normalized horizontal width of sideslope (Ls/Lo)
C(34) 94 angle of inclination of sideslope
C(35) kg normalized roughness size of sideslope (k/Rg)
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Variable

C(36) a
C(37} b

Definition

parameter in C = aSP for a surface under computation
exponent in C = aSb for a surface undex computation

A0 Iacos 80/Dg

Variable

Z°’s

TIME
OPH
NN

N
NCH
RSL
CURVE

Definition

special indication:
Z(1) = dimensionless time for rain to stop

Z(2) = 1, indicating that there is a carry-over flow at
the upstream end ‘

Z(2) = 0, indicating that there is no carry=-over flow at
the upstream end

Z(3) = 1, indicating the need of outputing the computed
interior boundary data

Z(3) = 0, indicating no need of outputing the computed

interior boundary data

dimensionless time, t,

overpressure head due to raindrop
number of overland flow sections
index for any section of flow
index for channel flow section
actual width of curved road surface
curvature of curved roadway

COMMON / B2 /

Variable
H(N,K,T)
V(N,K,T)
HL(N,J,T)
HR(N,J,T)
VR(N,J,T)
VL(N,J,T)
VI(N,J,T)
XJ(N,J,T)

JL(N,K,T)

Definition

normalized flow depth at grid point K of section N at time

T

normalized flow velocity at grid point K of section N at

time T

normalized conjugate depth on region ¢‘L’® of the Jth dis=-

continuity on section N at time T

normalized conjugate depth on region €¢R?’ of the Jth dis-

continuity on section N at time T

normalized conjugate velocity on region ¢SR’® of the Jth

discontinuity on section N at time T

normalized conjugate velocity on region €‘L’’ of the Jth

discontinuity on section N at time T

normalized propagation velocity of the Jth discontinuity

on section N at time T

normalized location of the Jth discontinuity on section N

at time T

index of discontinuity

= 1, indicating that there is a discontinuity (or discon-
tinuities) between grid points K and K=1, on section
N at time T
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Variableﬂ

NJJ

Definition

= (0, indicating that there is no discontinuity between
grid points K and K-1 on section N at time T

number of grid points on an overland flow .section under

computation

number of discontinuities on a section under computation

COMMON / B3 /

Variable

NK(N)
NJ(N)
DX

DT
DIST
HMIN
VMIN
ITYPE

10
0C(N,J)

DS

Definition

number of grid points on section N

number of dicontinuities on section N

normalized grid point interval

normalized time interval

normalized horizontal length of a section under computation

nermalized minimum depth of flow

normalized minimum velocity of flow

index for the type of problem

= 1, uniform stationary rainfall

= 2, moving rainstorm in parallel with gutter flow direction

= 3, moving rainstorm in parallel with overland flow
direction

= 4, moving rainstorm in parallel with overland flow
direction after the wavefront reaches the road curb

= 5, moving rainstorm in the opposite direction of gutter
flow

= 6, moving rainstorm in the opposite direction of over-
land flow

= 7, moving rainstorm in parallel with gutter flow direc-
tion after the wavefront reaches the inlet

index for outputing results

= 0, indicating skipping output

= 1, indicating the need of output

outputing the name of the subroutine by which the Jth dis-

continuity on section N is computed

normalized distance measured along the curved roadway

normalized grid point interval along the curved roadway

COMMON / B4 [/

Variable

IT(N,T)

XI(N,T)

Definition

index for the type of the internal boundary between over=
land flow of section N and gutter flow at time T

= 0, indicating continuous water surface

= 1, indicating discontinuous water surface

normalized horizontal length at the downstream end of over-
land flow section N at time T
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Variable
HI(N,T)
VI(N,T) . .
QI(N,T)

WI(N,T)

CT(K,T)_

CH(N,T)

CV(N,T)

Definition

normalized flow depth at the downstream end of overland
flow section N at time T

normalized flow velocity at the downstream end of overland
flow section N at time T

normalized discharge at the downstream end of overland flow
section N at time T .

normalized propagation velocity of the discontinuity when
there is a discontinuity at the internal boundary between
overland flow section N and gutter flow at time T
normalized top width of gutter flow at grid point K and
time T

normalized conjugate depth of the discontinuity on the
gutter=-flow part when there is a discontinuity at the in=
ternal boundary between overland flow section N and gutter
flow at time T

normalized conjugate velocity of the discontinuity on the
gutter-flow part when there is a discontinuity at the in-
ternal boundary between overland flow section N and gutter
flow at time T

COMMON / B5 /

Variable

NG(N,K)

SG(N,K)
FG(N,K)
NF

SF
FF

Definition

index for outputing how the friction slope at grid point K
on section N is evaluated

= (0, evaluated by Darcy=Weisbach equation

= 1, evaluated by energy equation

= 2, at downstream boundary control

friction slope at grid point K on section N
friction coefficient at grid point K on section N
index for outputing how the friction coefficient is
evaluated

friction slope

friction coefficient

COMMON / B6 /

Variable
AA1, BB1, CC1
SNK

IDG

SP1
XPG1

Definition

coefficients of an equation for the transverse profile of
the road surface

bed slop at the end of overland flow on roadway

index for the type of gutter flow

= 1, indicating curb~type gutter flow

= 2, indicating channel-type gutter flow

cross slope of paved shoulder (3 to 5 percent)

horizontal width of paved shoulder (12 ft, 4 ft, or 2 ft
for each traffic lane)
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Variable

SP2
XPG2

Definition

cross slope of gutter or median (1/12.¢r 10 percent)
horizontal width of gutter or median (3 ft orx 12 ft minus
2 ft times number of traffic lanes)

COMMON / B7 [/

Variable

NL (N, J)
NR(N,J)
SL(N,J)
SR(N,J)
FL(N,J)
FR(N,J)
NFJ

SFJ
FEJ

Dafinition

index for outputing how the friction coefficient on region
€$L>* of the Jth discontinuity on section N is evaluated
index for outputing how the friction coefficient on region
$¢R** of the Jth discontinuity on section N is evaluated
friction slope on region “‘L’’ of the Jth discontinuity on
section N

friction slope on region “¢R’° of the Jth discontinuity on
section N ’

friction coefficient on region “¢L’? of the Jth discon-
tinuity on section N

friction coefficient on region ¢¢R’? of the Jth discon~
tinuity on section N

index for outputing how the friction coefficient is eval-
uated at the Jth discontinuity

friction slope at the Jth discontinuity

friction coefficient at the Jth discontinuity

COMMON / B8 /

Variable

ACCU
ACCUX
ACCUY
HDRY

CC

Definition

specified accuracy

specified accuracy in horizontal direction

specified accuracy in vertical directiom

dimensionless small depth of water assumed on dry surface
below which there is no flow

C value in the equation f = C/R

COMMON / B9 /

Variable

TL(J,T)

TR(J,T)

Definition

top width on region ¢‘L’® of the Jth discontinuity in
gutter flow at time T
top width on region ¢¢R’’ of the Jth discontinuity in
gutter flow at time T
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COMMON / B1Q /

Variable Definition ,

DXCH . dimensionless grid interval of gutter flow -
DXRS dimensionless grid interval of overland flow
DDXCH dimensional: grid interval of gutter flow
DDXRS dimensional grid interval of overland flow

COMMON / B11 /

Variable Definition

HRR depth of water assumed on region ‘‘R’’ of the advancing
wavefront

VRR velocity of flow assumed on the region ¢‘R’? of the

advancing wavefront

COMMON / B12 /

Variable ~Definition
NDEPTH index for locating the advancing wavefront
N = 0, indicating the flow depth on the back side greater
than zero
= 1, indicating the flow depth on the back side less than
zero

COMMON / B13 /
Variable Definition
STR time for rainfall to stop
COMMON / B14 /
Variable Definition
IWET(N) index for determining whether or not a storm front reaches

section N
= (0, indicating that the storm front has not reached sec-

tion N
= 1, indicating that the storm front has already passed
section N
COMMON / B15. /
Variable Definition
VO or VO1 normalized total volume of water retained on the ground

surface at the initial time
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Variable Definition

VT or VI1 . normalized total volume of water retained on the ground
‘ surface at time T 4
VIN or VIN1 . normalized total volume of water inflowing into the initial

volume °V0°’° during time interval €°DI’’. .
VOUT or VOUI1 normalized total volume of water outflowing from the
' initial volume €‘V0’’ during time interval €°DI’?

COMMON / B16 /

Variable Definition

AAA storm parameter, in./hr

BBB storm parameter, minutes

CcC storm parameter, dimensionless

D time duration of rainstorm; minutes

RTO ratio of the time before the peak to the total time dura-
tion of rainstorm

RMN average rainfall intensity, in./hr, for partial duration
of rainfall up to time, t

RAV average rainfall intemsity, in./hr, for total duration of
rainfall

COMMON / B17 /

Variable Definition

FINF final infiltration rate of soil, in./hr

BEITA soil infiltration parameter, dimensionless

ALPHA soil infiltration parameter, dimensionless

TO soil infiltration parameter, minutes

TP time of ponding, minutes

VSF cumulative infiltration volume per unit surface area, inches
SPL potential infiltration, inches

2.2 Description of subroutine subprograms

Name Description

ADW solve the advancing wavefront problem due to a moving
rainstorm

CEQS solve two characteristic equations to obtain the velocity
and depth of flow at grid points

CONJ evaluate the conjugate depths and velocities of the discon-
tinuity

CRISEC locate critical sections, if any

CROSS calculate the velocity and depth of flow at a grid point
when a discontinuity crosses the grid point

CROWN formulate the equation of the transverse profile of a road
surface
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Name Description

CS interpolate hydraulic depth and velocity of flow and the
locations of CT - and ¢ =-characteristic curves between
two.grid points '

DBDY arrange downstream boundary condition

DPT compute the velocity and depth of flow at the downstream
grid point

ERR compute the computational error

EVDT evaluate next time interval in the subsequent computation

FRIC evaluate the Darcy-Weisbach friction coefficient

GEOM compute the geometric elements of channel sections

GOON ‘ substitute the values of all variables computed at time
level 2 into the corresponding variables at time:level 1

INBDY compute the velocity and depth of flow at the internal
boundary between road surface and curb-type gutter

INFLT compute the infiltration rate and time of ponding

INLET compute the runoff rate at the inlet and the carry=over
flow rate, if any

INPT arrange the computation of flow velocity and depth at
interior grid points

INTAL arrange the various assumptions of initial conditions

JL compute the velocity and depth of flow on region ¢‘L’® of
the discontinuity

JL1 use CT ~-characteristic equation and one of the equations

of discontinuity to compute the velocity and depth of flow
on region ¢‘L’’ of the discontinuity

JR compute the velocity and depth of flow on region “‘R’’ of
the discontinuity
JR1 use C" =~characteristic equation and one of the equations

of discontinuity to compute the velocity and depth of flow
on region “‘R’’ of the discontinuity

JUMP compute the location and propagation velocity of the dis~
continuity

NEWJ search new discontinuity, if any

OPHEAD compute the overpressure head due to raindrop impact

OUPT output the results of computation

PACKJ eliminate any discontinuity which disappears

PARA compute dimensionless variable C listed in COMMON / B1 /

PREP compute the values of those parameters which change with
section N

RAIN compute the rainfall intensity

REF compute the reference parameters

SLOPE compute the runoff discharge from the sideslope

STORM compute the values of those parameters which change with
the longitudinal coordinate

TYPE 4 . arrange the gutter flow conditions for the computation of

type 3 moving rainstorm when the advancing wavefront reaches
the road curb
UBDY arrange upstream boundary conditions
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Name
UPT

WRITJ

Description

computa the velocity and depth of flow at the upstream

grid point

output the computed results at discontinuities

2.3. Description of function subprograms

Name

EQDIS
FRTST

Description

expression of conditions at discontinuity
expression of Froude number

defined in COMMON /B3/

output at each n-th iteration
defined in COMMON /B1/
dimensionless time of this program

defined in COMMON /B10/
defined in COMMON /B10/
defined in COMMON /B1/

defined in COMMON /B1/
defined in COMMON /B1/
defined in COMMON /B1/
defined in COMMON /B1/
defined in COMMON /B1/
defined in COMMON /B1/
defined in COMMON /B1/
defined in COMMON /B1/

defined in COMMON /B1/
defined in COMMON /B1/
defined in COMMON /B1/
defined in COMMON /B1/
defined in COMMON /B1/
defined in COMMON /B1/
defined in COMMON /B1/
defined in COMMON /B1/

3. Input Data Descripition
Card Variable Format Card Description
No. Columns
1 ITYPE 15 1 to 5
NOUT 15 ) 6 to 10
NN 15 11 to 15
TEND F5.0 16 to 20
ending
DDXCH F5.0 21 to 25
DDXRS F5.0 26 to 30
CURVE F5.0 31 to 35
2 B(1) F10.0 1 to 10
B(2) ¥10.0 11 to 20
B(3) F10.0 21 to 30
B(4) F10.0 31 to 40
B(5) F10.0 41 to 50
B(6) F10.0 51 to 60
B(7) F10.0 61 to 70
B(8) F10.0 71 to 80
3 B(9) F10.0 1 to 10
B(10) F10.0 11 to 20
B(11) F10.0 21 to 30
B(12) F10.0 31 to 40
B(13) F10.0 41 to 50
B(14) ¥10.0 51 to 60
B(15) F10.0 61 to 70
B(16) F10.0 71 to 80
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defined in COMMON /B1/
defined in COMMON /B1/
defined in COMMON /B1/
defined in COMMON /B1/
defined in COMMON /B1/
defined in COMMON /B1/
defined in COMMON /B1/
defined in COMMON /B1/

defined in COMMON /B1/
defined in COMMON /B1/
defined in COMMON /B1/
defined in COMMON /B1/
defined in COMMON /B1/
defined in COMMON /B1/
defined in COMMON /B1/
defined in COMMON /B1/

defined in COMMON /B1/
defined in COMMOW /B1/
defined in COMMON /B1/
defined in COMMON /B1/
defined in COMMON /B1/
defined in COMMON /B1/
defined in COMMON /B1/
defined in COMMON /B1/

number of traffic lanes

defined in COMMON /B6/

vertical drop of crown at the highest
elevation of roadway, usually taken
vertical drop of crown in ft for
vertical drop of crown in ft for

super elevation, ft per ft of road-

side friction (cornering ratio)
between tires and road surface

Card Variable Format Card Description :
No. Columns
4  B(17) F10.0 1 to 10
B(18) F10.0 11 to 20
B(19) F10.0 21 to 30
B(20) F10.0 31 to 40
B(21) F10.0 41 to 50
B(22) F10.0 51 to 60 °
B(23) F10.0 61 to 70
B(24) F10.0 71 to 80
5 B(25) F10.0 1 to 10
B(26) F10.0 11 to 20
B(27) F10.0 21 to 30
B(28) F10.0 31 to 40
B(29) F10.0 41 to 50
B(30) F10.0 51 to 60
B(31) F10.0 61 to 70
B(32) F10.0 71 to 80
6 B(33) ¥10.0 1 to 10
B (34) F10.0 11 to 20
B(35) ¥10.0 21 to 30
B (36) ¥10.0 31 to 40
B(37) F10.0 41 to 50
B(38) F10.0 51 to 60
B(39) F10.0 61 to 70
B (40) F10.0 71 to 80
7 NL 15 1 to 5
IDG 15 6 to 10
Y(1) F10.0 11 to 20
as zero
Y(2) ¥10.0 21 to 30
one~-lane width
Y(3) F10.0 31 to 40
two-lane widths
SUPEL F10.0 41 to 50
way width
TRFCT F10.0 51 to 60
SPEED F10.0 61 to 70
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Card Variable Format Card Description

No. Columns
8 SP1 F10.0 1 to 10 defined in COMMON /B6/
XPG1 F10.0 11 to 20 defined in COMMON /B6/
SP2 F10.0 21 to 30 defined in COMMON /B6/
XPG2 F10.0 31 to 40 defined in COMMON /B6/
9 AAA F10.0 1 to 10  defined in COMMON /B16/
BBB F10.0 11 to 20 . defined in COMMON /B16/
CCC F10.0 21 to 30 defined in COMMON /B16/
TD. F10.0 31 to 40 defined in COMMON /B16/
RTO F10.0 41 to 50 defined in COMMON /B16/
10  FINF F10.0 1 to 10 defined in COMMON /B17/
BETTA F10.0 11 to 20 defined in COMMON /B17/
ALPHA F10.0 21 to 30 defined in COMMON /B17/
TO F10.0 31 to 40 defined in COMMON /B17/
11 NRSOUT 8011 1 to 80 any of the 80 columns punched with

any digit except zero represents the
corresponding flow sections needed
to be output

4. Program Flowchart

The hand-drawn flowchart of the computer program is shown in
Figure 37.
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Figure 37.
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5. Description of Variables Used as
Counters and Accumulators

Program. Variable Initial Reset
Name Name Value {(yes or no)
MAIN ’ I0UT 1 no
MAIN NOCT 0] no
MATIN NCT 0 no
ADW NCTT 0 yes
CRISEC NCT 0 yes
CROSS NCT 0 yes
cs NCT 0  yes
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Description

Search for which of the over-
land flow sections needed to
be output.

Count the number of itera-
tions in the computation of
time required for filling
depression.

Count the number of time
levels in the computation.

Count the number of itera-

tions in the computation of
wavefront location. Reset

at new time level.

Count the number of itera-
tions in the computation of
critical section. Reset
whenever there is a new
critical section in the flow.

Count the number of itera-~
tions in the computation of
V and h at a point on the
path of the discontinuity
in the x, t-~plane when the
discontinuity crosses the
grid point. Reset whenever
such computation is needed.

Count the number of itera-
tions in the computation of
D, V, and the location of
Ct- or C -characteristic
curve. Reset for every
computation at a grid point.



Program
Name

Variable
Name

Initial
Value

Reset
{(yes or no)

Description

DPT

FRIC

INBDY

INFLT

INPT

INTAL

NCT

NCT

NCT

NCT

NCT

NCT

0

yes

yes

ves

no

yes

no
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Count the number of itera-
tions in the computation of
V and h for subcritical flow
at the downstream end of
flow. Reset whenever such
computation is needed.

Count the number of itera-~
tions in the computation of
the Darcy-Weisbach coeffi-
cient, f, using Eq. 20. Re~
set whenever such computation
is needed.

Count the number of itera-
tions in the computation of
new discontinuous water sur-—
face on the internal boun-
dary. Reset for every com-
putation at the internal
boundary.

Count the number of itera-
tions in the computation of
tp and to from rainstorm
and soil infiltration param-
eters.

Count the number of itera-

tions in the computation of
V in the overland flow part
for an ITYPE 2 or 5 storm.

Reset whenever such compu-

tation is needed.

Count the number of itera-
tions in the computation of
time required to reach the
initial detention assumed.



Program
Name

Variable
Name

Initial

Reset

Value (yes or no)

Description

INTAL

JL1

JR1

NEWJ

REF

REF

TYPE4

NCT

NCT

NCT

NCT

NCT

NCT

NCT

158

no

yes

ves

yes

no

no

no

Count the number of itera-
tions in the computation of
initial V on the ground sur-
face corresponding to the
assumed initial detention.

Count the number of itera-
tions in the computation of
Vi, and hj, on region "L" of
the discontinuity. Reset
whenever such computation
is needed.

Count the number of itera-
tions in the computation of
VR and hR on region "R" of
the discontinuity. Reset
whenever such computation
is needed.

Count the number of itera-
tions in search for a new
discontinuity between two
grid points. Reset for
every such computation be-
fore computing V and h at
a grid point.

Count the number of itera-
tions in the computation of
reference (normalizing) quan-
tities such as the flow
depth, h,, using Eq. 72.

Count the number of itera-
tions in the computation of
the Darcy~Weisbach friction
coefficient, f, for reference
flow.

Count the number of itera-
tions in the computation of
V for gutter when the advan-
cing wavefront reaches the
road curb under TYPE 3 storm.



6. Program Listing

6.1. The Job Control Language (JCL) .

In preparing and executing computer programs on the UNIVAC 1108,
the following EXEC-8 system control cards are needed. Note the symbol
@ which is used in column 1 of all control cards is a 7-8 punch. To
punch this symbol, hold the MULT PCH and NUM keys, and punch a 7 and 8§.

(1) The Run card is the first card of each job deck. This card
contains the project number, estimated time, and estimated pages.

(2)- The HDG card is used to place a heading at the top of each page
of both the program listing and any output.

(3) A FOR card must precede each FORTRAN deck included in the job.
It is used to inform the system that a FORTRAN deck follows.

(4) The XQT card must follow all the FORTRAN decks. It is used to
indicate that execution is desired. If one wants to compile only,

simply delete this card. The data cards should immediately follow

the XQT card.

(5) The FIN card indicates the end of the job deck.

(6) The remote control card is simply a card with a 7-8 punch in
columns 1 and 2. This card followed immediately by two blank cards
is needed on a remote terminal UNIVAC 9200.

An example of a complete FORTRAN job deck is as follows:

@RUN

@HDG

@FOR, IS MAIN,MAIN
@FOR, IS ADW,ADW

@FOR, IS WRITJ,WRITJ
@XQT

.

data cards, if any
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@QFIN

@@remote control card

blank card :
blank card

There are a wide variety of options in preparing and executing the
control cards. For example, the @ASG statement is used to name magnetic
tape or Fastrand drum files, to assign temporary or catalogued files to
the requesting run, to specify files to be catalogued, and to specify
storage methods and requirements for these files. Other executive con-
trol statements, too many to be cited herein, can be found in the UNIVAC
1108 user's guide. :

6.2. Source listing

The main program is listed first and then followed by the subpro-
grams in the alphabetic order. ‘For convenience in reference, the state-
ment numbers in each of the main program and subprograms are given.
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WO RN

XNz xRz Xs)

(e NeXe)

2 X s Xz

(2]

o

[y Re]

o0

BELEEE AL EAAES LR AR AR FE AR PR IS HR AR SN SR SE IEF OX AR KB EB X F TS EASH 6B &8
¥ DYNAMIC B8EHAVIOR CF RUNOFF FROM HIGHWAY WATERSHEDS *
* UNDER TIME- AND SPACE-VARYING RAINSTORMS *

FFBE R FX BEAE T KRB FE RS BF RX XX FX XX HE AT A% 3K 24X SA EL XB XS IR EE B ETEBFR &K

MAIN PROGRAM

COMMON /B1/ BULA4G )« CLU0Y 9 ZL10) e TIME +OPH o NN'eN ¢eNCH R SL v CURVE

COMMON /827 HU2T 2 Te2) sV {2 T 2T 92) s HL(27+100¢2) ¢HRU 271002} :
SVRIZ2Te10 92 ) VL2 To 1092 e VU(Z2T7e1092 3o XJ(2T7 01002 eJTU27e2T923eKNeNJJ
COMMON /B3 7/ NKU27)sNJU27 }1+DXsDToDIST +HMIN «VMINSITYPE+I040C(27+10}s
$S+0S

COMMON/BE/AALeBEB L CCLr SNKrIDG+SPL1eXPGL#SP 24 XPC2
COMMON/BS/ACCUsACCUX sACCLY +HDRY¢CC

COMMON /81 0/ DXCH»DXRS+DDXCHsCDXRS

COMMON /8147 IWET(27)

COMMON/B16 Z/AAASBB3+CCCoTDr RTOrRMNeRAYV

COMMON/B17 /FINFoBETTAs ALFHAr TO» TP 9w VSFo SPT

DIMENSION NRSCUTI27)NSTI27)

DIMENSION STAR(1®) )

DATA NCY/0/+STAR/1L8x" * = %%

READ(5+100) ITYPE« NOUT +NNo TEND+ODXCH +DDXRS+CURVE

100 FORMAT(3I5+10F5.0)

NOUT OUTPUT AT EACH N-TH ITERATION

NN NUMBER OF SECTIONS OF ROADSURFACE FL OW
TEND DIMENSIONLESS TIME OF THIS FROGRAM ENDING
NCHZINN+1 .

N=NCH FOR CHANNEL FLOW

NSZNCH+1

NS FOR FLOW ON SIDESLOPE

CURVE=CURVATURE CF ROADWAY + 2/RADIUS (FT). SET ZERO FOR STRAIGHTY
ROADWAY

READ(5+101) (B(I}eI=Z1e40)

101 FORMAT(8F10.0)

FVALUATE THE EQUATION OF ROAD SURFACE CROWN
IF (NNeGT+1) CALL CRORKN

CALL RAIN(1,0.)

COMPUTATION OF THZ REFEREINCE QUANTITIES

CALL REF

CALL INFLT(1+0.)

COMPUTATION OF THE PARAMETERS USED IN THE PROGRAM
CALL PARA .

WRITE(E+201)TITYPEs NOUT «NNe TEND+DDXCH +DDXRS

201 FORMAT(/* ITYPE =*¢I2+" NCOUT ="¢I3+* NN T°+I3s* TEND =*4F6.2,

$' DDXCH = Y9F5e29* FT DOWS = *sF6e2¢" FT')

SET UP INITIAL CONDITIONS
CALL INTAL
IF(NN.EQ-1) GO TO &

READ IN SECTION NOSe. OF fOAD SURFACES NEEDED TO BE OQUTPUT
READ(S vl U2 ){NRSOUT(I)eIZ1eNN)

102 FORMATI(80I1) “.

I0UT=1
DO S5 I=1 NN
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OO0

o0 o

e e NeNy]

300

50

51

55

52
53
202

6

11

200

12

IFENRSOUTII)EQ. U} GO TO S
NST(IOQUTIZX
JoUTZIOUT+1

CONTINUE

COMPUTE TIME REQUIRED FOR FILLING DEPRESSIONs, B(#0)s INCHES
TRFOS=DIMENSIONLESS TIME FOR OVERCOMING DETENTION AND DEPRESSION
IF{B{40)«LE-D) GOTO 53

NOCT=0

TRFDS=TD*60.2B(12) /B{1 1)

CALL RAIN(3¢TRFDS)

PTL=RMN2TRFDS#B(111)/8(12 1/ 3600.

IF{BLUOILT.PTL) GOTO S50

WRITE( 6. 300)

FORMAT(/° THERE IS NO RUNDFF*}

sSToP

Ti=0.

T2ZTRFDS

TREDSZ=T1#{T2-T1) /2,

NOCT=NOCT+1

IF(NOCT.6Te30) SS=SQRT{~1.)
IFCUT2-T1)LT.ACCU) GOTO 52
CALL RAIN(3sTRFDS}
PTL=RMN+TRFDS*B(111)/2(12)7 3600,
IF{ABS(E(HU) -PTL ). LT.ACCU} GOTO 52
IF(B(4D).LT.PTL} COTO 55
Ti=TRFDS

G070 51

T2Z=TRFDS

G070 51

IF(TIME.LT.TRFDS)Y TIMEZTRFDS
TOIMZ-TIME«B(113/08(12)

HRITE( 60202} TIME« TDIM

FORMAT (/® DIMENSIONLESS TIME FOR DEPRESSICN STORAGE — TINTERCEPTIC

SN = "eE1D0.4s" (DIMENSIONAL TIME = *¢F10.3¢* SEC.)}")
EVALUATION OF TIME INTERVAL. DT
CALL EVDT )

START TO NEXT TIME INTERVAL COMPUTAYION
TIMEZTIME+DTY
IF{TIME.GT.TEND) STOP

Io INDICATES OUTFUT CONTROL
0 NO OUTPUT
1 ouTPUT
J0=0
NCT=NCT+ 1
LFANCT/NOUTSNOUTCQeNCTY TO= 1
IFtI0.EQ.Q) GO TO 12
TOIM=TIME«B({11)/B1(12)
WRITE(Ee200) STARYSTAReSTAR(1) o TIMEs TDIMe (STAR(IIsIZ 147} ¢STAR

FORMAT(2{/18A6)/AC +% TIME Z®esFIe3 95 Xe *{DIMENSIONAL TIME =%¢F9a3
$°* SEC. ) *° pTAG /1 BAG)

100=I0

I0-D

IF{ITYPE.EG«2) GC TO 25
COMPUTE FLOW ON SIDESLOPE
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11¢&
115
ii6
117
118
119
120
121
122
123
124
125
126
127
128
123
130
131
132
133
134
135
136
137
138
133
140
141
142
143
144
145
146
147
148
143
150
151
152
153

155
156
157
158
159
i60
161
162
" 163
164
165
166
167
168
169
170

oo

15

20

21

30
32

40

NZNS

IF(TIME.LT.TP*60.#B(12) /B0 11}) GOYO 15
CALL SLOPE

DO 20 N=1+NCH

CALL PREP

IF(KN.LT.2) GOTO 20
IF(ITYPE.EQ.3) GO TO 41
CALL INPT

COMPUTATION OF UPSTREAM DPOUNDARY

IFINJLTNCH) CALL UBDY

IF(ITYPELEQsl4) GO TO 42

IF(NN.EQs1) CALL DBDY

IF(NN.EGs1) GO TO 21

CONTINUE )
IFC=INDEX FOR COMPUTATION OF NEWLY OCCURRING SHOCK WAVE .
ASSUME THE OCCURRKRENCE OF SHOCK WAVES (IFC=2)s OTHERWISE (IFC=1)
IFc=1

Y0 COMPUTE THE UFSTREAM AND DOQNSTREAM END OF CHANNEL FLOW AND
INTERNAL BOUNDARY

DO 30 N=1e¢NCH

CALL PREP

JF{KNaLYe2) COTO 30
JF(NGLTeNNeANDNLGT«1) CALL INBDY{1s DISTrHH,TY»2)
IF(N.EGeNN¢AND.IDG+EQe2) CALL INBDY(2+DISToHHTT»2) |

COMPUTE UPSTREAM AND DOWNS TREAM BOUNDARY OF CHANNEL FLOW
JFIITYPENE <5 cANDaNoEQOWNCH]) CALL USDY
IF(N.EQeNCH) CALL INLET

IF(NJINY.GT.0) CALL PACKJ

THE FOLLOWING STATEMENT IS OPTIONAL
JF(IFC.EQ.2) CALL NEWJ

CONTINUE

Io=I00

OQUTPUT RESULTS

IF(IC.EQG.D) GO TO 31

DO 40 I=1.I0UT

NZNST(I)

IF(I.EQ.IOUT) N=NCH
IF(ITYPECEQ.2.AND.INFT(N).EQ.0) GO TO 40
IFLITYPECEQ«5«ANDLIWETIN)EQeU) GO TO 40
Z(3)1=0.

IF(I.EQ.IOUT-1} Z(3)=1.

CALL PREP

CALL OUPT

IF(NN.EQ.1) GO TOC 31

CONTINUE

N=NS

CALL PREP

CALL OUPT

CALCULATE THE COMPUTATIONAL ERROR
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171
172
173
174
175
176
177
178
173
180
181
is2
183
184
185
186
187
188
189
130
191
192

(g

31

35

81

43

42

CALL ERR(2]

G0 ON ITERATION

CALL GOON

GO 70 &

NZNCH

CALL PREP

CALL ADW

IFINJINCH) «6Te0) CALL PACKJ
GO T0 322

CALL ADW

IFINJUIN)oGTo0) CALL PACKJ
IF(ITYPE-EGeH4) GG TO 42
Z(31:=0.

Io=I00

IF(I0.EQ.0) GC.TO 31

CALL PREP

CALL ouPT

GO TO 31

CALL TYPES4

GO0 T0 32

END
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LONTTNEWNM

SUBROUTINE ADW ) .

SOLVE THE ADVANCING WAVEFRONT PROBLEM DUE TO A MOVING RATNSTORM
COMMON /B1/ B(HU):CIQO)vZ(10).TIME»CPH-NN'NvNCHwRSLwCURVE
COMMON /B2 H(27127u2)rV(2702712)vHL(2701012)'HP(27'10'2)v
$VR(27:10-2)1VL(27-10rZ)vVJ(27olUl2)vXJ(2711072)QJI(27'271219KNeNJJ
COMMON /8337 NK(27)nNJ(27)oDXvDY-DISTvHMIN:VHINvITYPE:IOwOC(27vIU)o
$SDS

COMMON /B4 / II(27:2)vXI(Z7v2)vHI(27v2)rVI(Z7v2)vGI(27'2)vHI(27v2):
SCT(27r2)vCH(2712)vCV(27921‘

COMMON /857 NG(27'27)'SG(27’27,0FG(27127)0NFvSFvFF
COHMON/BG/AAI-BBl.CCl-SNK'IDG'SPIvXPGlvSPZoXPGZ

COMMON /B7/ NL(Z?vlU)oNR(Z7010)'SL(Z7110)cSR(27|lU)cFL(27110)t
sFR(27v10)oNFJvSFJ-FFJ :

COMMON /B8 / ACCU:ACCUXVACCUY’HDRYvCC'

COMMON /8BS3/ TL(lUvZ)vTR(}UoZ)
COMMON /BlU/_DXCH:DXRSvDDXCHvDDXRS
COMMON /B11/ HRReVRR

COMMON /sB12/ NDEPTH

COMMON /B1lg/ INET(27)

COMMON /B15/ VOsVTsYINSV QUT
DIMENSION HHI(2) )
DIMENSION FTTU2)e¢XJ27T(2)

DATA NCO/0/9yNAME /? ADW®*/
TIM=TIME-DT

CNK:COS(ASIN(SPZ))
DXPG1=XPC1/B({11)
DXPG2=XPG2/B(11)

XJIZXJIINsNUJ v 1) :
KJ:XJl/DX*l.SSSSS

K1zKJ-1

IF(ITYPE.EO.Z.OR.ITYPE.EQ.7) GOTO sO

DO 5 K=2eK1

XKZFLOAT{K=1)DX

CALL STORM(XKsTIM)

CALL OPHEAD

KAzZK-1

KCzK+}1

XA=XK~-DX

XB=XK

XC=XK+DX

IF(K.EGeK1) XC=XJ1

HAZH(N KA+ 1) .
HB=H(N+K 1) . )
HCZH{N»KCe 1)

TIF(KeEQeK1) HCZHL(Ne NJJs 1)

VASVINeKA® 1) '

VEZVINwKs1)

VCZVINWKCr 1)

IF(KeEQeK1) VCZVLINsNJJ» 1)

CALL GEOH(ZOAA'HA'RA'TA'DAII'I'XA,

CALL GEO.".(Z'AB'HBcRBtTBvDB'l'].'XB)

CALL GEOH(Z,ACoHC:RCvTCcDCvlvllXC)
FRB:FRTST(VEvDBvGPH-C(llvC(S)vC(S)'C(ZG)vl)

CALL CS(1-'XA'XBvXDvXB.DAvDB.DDvVA'VBvVU) . .
IF(FRB.GT.U.) GO T0 1

IF(XC—XB.LT.ACCU) GO T0 &
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10
24

27

CALL CS{-1,¢XBsXCeXE+XBsDB3eDCeDEaYBe VCoVE)
IFINDEPTH.EGe1} CO TO 6 .
TJFIXE.GTXCANDKLEQaK1) GO TO 6

G0 TO 2

CALL CS{~1ooXAeXBeXEoXBeDAoDByDEwVAe VBsVE)
CALL CEGSEVDelDsVEeDEsVINeKs2) s HINeKe239XDeXEeDT+DTo X8)
NGINsKIZNF :

SGI{NsKI=SF

FGINsKIZFF

CONTINUE

6O 10 7

K1zK1-1

XKZFLOAT{K1-1}3DX

YF{K1lelTe2) SSZSQRT(-1.1}

IFEITYPE.EQ.2) GO TO 52

CALL UBDY

IF(NCO.EQa1) GO TO 3

NCO=1

60 Y0 8

vozvy |

XRZ{ TIME~-DT/2:-32CE20 )

"VINZB(3231/B(19)*XRsDT+TB=C{19)+Bl101»B(11)/8(18)+C(28)=B11

VT1z0. .
DO 10 K=2¢K1

XK=FLOAT{K~-1)DX

XK1=XK~-DX

XKAZ (XK+ XK1} /2

CALL STORMEXKASTIME])

CALL GECMI2sAAsHINIK-192¥s RAsTAvDAS1 s2¢XK1)
CALL GEOM{2+ABeH{N K2} e FBeTBoeDBole2eXK}
VI1IZVT1+# (L AA+AB D «DX/2./C( 3}

CONTINUE

VTI2=VO+VIN-VTL

IT¥=1

NCTT=0

XJZ=XJII+VIINeNJJ ¢l }2DT

XJ2TT(ITT) =XJ2

CALL JLI(XJ2TTUITT)eNJdJSe VLLeHLL:VRRe HRR9¢$28)
NCTT=NCTT+1

XKJZTEXJ2TTCITTI4XK I/ 20

CALL STCRM{XKJsTIME) :

CALL GEOM(2sALL oHLLePLLy TLL oDLLo1¢2¢ XJ2TT(ITTY}
CALL GEOM(2sARRYHRReRRRe TRReDRRe 1 e 2o XJ2TT(ITT))
DXJZXJ2YTOITTI-FLOAT(KI~-1)#DX
CT22-(AR+ALL)Y*DXJ/2./7C(3)

IFIVT2.LTACCU) GO TO 26

FTT(ITTIZVT2-CT22 ’
JFEABSIFTT(ITTI).LTLACCU) GO TO 18

IF(ITT.EQ.1) GO 7O 27

IFINCTTLCT.20) SS=SQART(-1,.)

XJZZUFTT (L)« XJ2TTIZ23-FTT2) 2 XJ2TT (D W/ (FTTHLY}~-FTIT (2))
XJ2TT{1)=XJ2TTL2)

XJ27T(2)=Xu2

FTT(1LI=ZFTT(2)

60 T0 9

ITr=2

XJ2zXJ240.1¢DX
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114
115
116
117
113
1i9
120
- 121
i22
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143

164

145
146
147
148
149
150
151
152
1583
154
155
156
157

159
160
161
162
163
164
165
166
167
1638
1693
170

i8
26
22

25

21

19

23

20

28

80

XJ2TT(2)=XJ2

G0 10 9

CONTINUE

VTZVT1+( AB+ALL)/2.+DXJ/C(3}
IF(ITYPE.EQa3eANDXJ2.6TDIST) 60 TO 80
IF(ITYPEEQ.2Z«ANDXJ2.6T<C(22)) GO TO 57
IF{TIME*C(30).6T.XJ2) GO TO 20
IFIDXJaLTDX) 60 TO 21

K=K1+1
HINsKe2)SHIN'K1e2) —(HINeKL »2)=HLL) *DX/DXJ
VINoKe2) ZVINsK192) ~(VINeKL 92 1=-VLL) sDX/DXJ
NNNN=N :

N=K

IFCITYPE.EQe2) CALL INBDY(1eXXoHHeTT2)
N=NNNN : :
CALL PREP

CALL FRIC(VLLsHLLYFLLsRLLYRELYRECLeIRL¢29XJ2)
SLANINJIIZCIG)*FLL#ABSIVLL) «VLL/(Bt13)sRLL)
FLININJUIZFLL

vouTt=0.

OCUINsNJJIZNAME

HLINsNJJ 92 3=HLL

VLINsNJJ#2)TVLL

IF(ABS(ALL~ARR) «LELACCU) VJI(NsNJIJe2) =0,
IF(ABS(ALL~ARR) .LELACCU) GOTC 23
VJ(NINJJ e2)=C ALL*VLL ~ARR*VRR )/ L ALL-ARR)
VRINsNJJ 92 }ZVRR

HRINsNJJ #2 ISHRR

XJININJIe2)3=XJ2

IF(ITYPE.EQa2) TLINJJ92)=TLL
IFCITYPE.EGL2) TRINJJy 2)=TRR
IF(ITYPELEQ.Z) KJ2=XJ2/DXCH+0.99399
JFUITYPE.EQR.2) IWET(KJ2)T1

RETURN

IF(TIME+*CI320).GT.2IST} GO TO 80
HL{NsNJJs2)=HRR

VLINsNJJ 92 ITVRR

VJININJJ12)Z0.

HRINsNJJ92 ) ZHRR

VRINsNJJ 92 )=VRR

XJINeNJJ 92 )ZTIME2C(3O)

IF(ITYPELEQe2) KJ2-TIME* C(30)/DXCH+0.39999
JF(ITYPELEQ.2) IWET(KJ2)Z1 .

RETURN .

VJIZVJI(NeNJJI e 1)

NJJ=NJ 1

HR{N»NJJ »2 }=HRR

VRIN#NJJI¥2)ZVRR

XJINsNJJI 92 }=XJ2

VJ(NsNJJr212VUL

RETURN

ITYPE=Y

HL (NsNJJ»2 ) THLL

VLINsNJJs2IZVLL
HL2T(HLIN o NJJ2 1) +HLINeNJI» 2)1/2,
VL2Z(VLINeNJJe1)+VLININII9 2)) /2,

CALL GEOM{Z2¢AL2+HLZ¢RL2¢TL2¢DL2¢192¢DIST)
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171
172
173
174
175
i7s
177
178
179
180
181
182
183
184
185
186
187
183
189
190
191
192
193
194
195
136
187
193
199
200
2061
2u2
203
204
2065
206
207

209
210

B{2SIZVL2«ALZ=E(2123+B{18)

NJIJTNJII-1 .

NJINI=NJIY
RHCHZC(ZSBtB(l??$DT*8111§/3(12)+SGRT((C(28)88(19)‘DT$B(11)/B(12))t*
$2¢2.28(2913DT*B{11)1/78(12)s TANLASINISPZ) 1))

HENCHoNs 2} SHCH#C{53/E1161))

8(221=0.

RETURN

50 DO 51 N=1¢NN

51

52

58

CALL PREP

CALL INPTY

CALL UEDY

CONTINUE

NZNCH

CALL PREP
IF(ITYPE.EQ.T) GOTO E9
GO0 Y0 & '

DO 58 NZ2¢K1

CALL PREP

CALL INBDY{1loXXeHH :TTs 2}
CONTINUE

N=NCH

CALL PREP

CALL UBDY

IF{ NCO.EQ.1) GO YO 53
NCO=1

VO0=0.

DO 63 N=2¢3
IF{IWET{N},EQoO- ANDo INET IN~-11EQ.0) 6O TO 63
KN={C{22}+DXPG1+DXPG2) /DXRS+1.93339
FCY=DOXCH

XN=FLOAT {N-1) ¢DXCH

XR=TIME+«C( 20}

IF{XN.LT<.XR} GO 71O &7

XRN=DXCH-( XN-XR}

FCT=DOXCH*XRN/DXCH

67 DO 62 K=2vKN

XZFLOAT{K-1)=*DXRS

X1=X-DXRS

CALL GEOM({2¢AloHINKs1)eFlyT1loD1lelrl ¢X)

CALL CEOM(Z9AZeH{N-10K911eR2:sT2¢D291+1+X}

CALL CEOM{ZsAZsHINeK~19s1}eRZ¢T3¢DI 911 eX1)

CALL OCEOMIZsAGsHIN-T1 +K~1 11 eRUsTUsDY +1 915 X1)
TF(KEQaKN) CALL CEOMI{Z2¢s A1 sHI(N211sR1sT1eD1loleleXX}
IF(K.EQaKN) CALL CEOM({2¢ B2+ HI(N=-1¢1) sR2+T2sD2¢1s1 ¢+XX])
DX1=DXRS .

IF(K-EQaKN) DX1o(XI(Ne 1} XTI (N-1e11-2*¢FLOAT(KN-2)*DXRS)/ 20
X12=X-DX1/2.

CALL STORMIX12:TIME)

VOZVO+ (A1+A2+ AZ+A4 )/ Ue*DXLsFCT/CUI)

62 CONTINUE
63 CONTINUE

N=NCH :
CALL GEOM{2eAloHiN1+1)efloT1eD1vlelr0e)
CALL GEOM{2¢A2+H(}iv2s1)eR29sT2¢D2¢121+DXCH)
CALL GEOM({Z2¢AZsHLINeNJJe 11 eR3¢T35eDZr1s2eXJ1)
VOZVO+ (A1+A2)/2.#DXCH/C(E)
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228
223
230
231
232

233

234
23S
236
237
238
233
240
241
242
243
244
245
246
287
288
249
250
251
252
253
254
255
2586
257
258
259
260
261
262
263
264
265
266
267
268
263
270
271
212
273
274
275
276
217
278
273
280
281
282
283
284

VOZVO+{A2+A3) /2.3 (XJ1-DXCH) 7C(5)
GO T0 b1 ¢
53 vOoz=vT
61 XR=(TYIME-DT/Z.)¢C{20}
VIN:B(32)/8(19)#XR*DT*C(1§)t(8(22)+XPGl+XPGZ)‘B(113/B(18)¢C(28)‘B(
$12)/8B(11)
vT1zQ.
DO 56 N=2,NN .
TFCIWETIN) e£Q oD AND TWET IN=1).EQeq) 60 TO0 Ss
CALL PREP
IFUINKIN-1).LT<KN) KNNK(N-1)
FCT=DDXCH i
XNZFLOATU(N-1)*DXCH
XRZTIME«C{ 30)
IF(XNJLT.XR) GO 70 &8
XRN=DXCH—-( XN-XR)
FCT=DDXCH*XRN/DXCH
68 DO 54 K=2vKN
XZFLOAT{K—-1)*DXRS
X1=X~DXRS
DX1=DXRS .
CALL GEOH(Z:AloH(NoKoZPOFlle'DleOZ'X)
caLL GEOM(2eAZsHIN~11K921¢R2sT2eD2+1 ¢20X)
CALL GEOH(Z:AZ-H(NOK-Il2)vR3tT3103v1120X1)
CALL GEOM(Z:AQ.H(N—l-K—le)vRQoT“-DQvloZyXl)
IF{K.LT.KN) GO TO 5S4 -
DXlZ(XI(NvZ)fAINT(XI(N'Z)/DXRS)*DXRS+XI(N—lpZ)—AINT(XI(NvZ)/DXRS)
$*DXRS) /2,
caALL GEOH(Z'Al'HI‘N'Z)'Rl'TllDl'l’Z'XI(Ntz))
CALL GEOH(Z.AZvHI(N-l:Z)vRZoTZcDZvle'XI(N“loZ))
54 X12=X~DX1/2.
CALL STORMIX12+TIME)
VI1=VT 1+ (A14A2+AZ+A4 }+DX1+FCT/4./CLO)
56 CONTINUE ’
N=NCH
CALL PREP
DO 64 K=2Z,K1
XK=FLOAT(K-1) «DXCH
XK1=X-DXCH
XKAZ(XK+XK1) /2.
CALL STORMIXKAsTIME)
CALL GEGM(ZOAA'H(N'K‘IOZ’!RA’TA'DAVI'ZPXKl’
CALL GEOMI{2+ABsHIN K *2)9REyTBeDBrl42 oXK)
VI1=VT1+ (AA+AB)«CXCH/2./7CL9)
64 CONTINUE
CALL STORMIXJ1lsTIME}
GO TO 24
57 XJUNCHsNJIJ2)=XJ2
NJINCHI=NJINCH) -1
H{NCH s NN '2):2¢*H(NCH'NN"112)"'H‘NCHINN‘Z'Z,
VINCHsNN»2 TZo*VINCHINN=1r2)=V(NCHINN=-2+2)
HINCHeNNel }ZHMIN
CYINNe1)=ACCU
CALL INBDY(2+XXeHHsT Ty 2)
ITYPE=T7 :
RETURN
539 CALL INPT
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285
286
287
288
289
230
291
292
293
234
235

60

NNI=NN-1

DO 60 N=2,HNN1
CALL PREP
CALL INBOYE1eXXsHHsTTo 2}
CONTINUE
N=NCH

CALL PREP
CALL UBDY
CALL INLEY
RETURN

END
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SUBROUTINE CEQS(VD ¢DDs VE D Ee VP sHP ¢ XD #XEsD TD#DTE 4 X P)

SOLVE TWO CHARACTERISTIC EQUATIONS YO OBTAIN VP AND HP

COMMON /B1/ BUHO}«C(40) v Z(10 )2 TIME +OFH o NN oN oNCH ¢RSL ¢ CURVE

COMMON /B3/ NK(27)vNJ(27)nDX1DT DISToHMIN +VMINSITYPE+IOeOCI27¢10)
$Se DS

COMHON/BQ/II(27'2)vXI(27v?)vHI(Z702)vVI(27|2)OQI(27'2)vHI(27|2)1
SCTU27+2) e CHIZ27 92 )eCVI2742)

COMMON /BS/ NG(27127)vSG(”7v27)0FG(”7v27)vNF'SFvFF

COMMON/BG6/AA1¢BB1eCC1rSNKy IDCeSP1e XP Gl #SP2yXPG2

COMMON /B77 NL{27+¢10)+NR(27¢120)eSLI2Te10) sSRE2T910}+sFLL27¢10)
$FR(27+10) e NFUsSFUeFFJ

COMMON /887 ACCUsACCUX »ACCUY +HDRY CC

COMMON/B16 FAAA+3BB+sCCC+TDrRTOsRMNeRAV

CALL RAIN(3¢TIME) '

KP=XP/DX+1+92999

IF(IDGeEQelo ANDaNaEQoNCH) CTMIN=-HMIN#B(16)/C(SI/TANCASINISP2))/B(1
$0)

CD AND CE ARE ENERGY COEFFICIENTS AT POINTS D AND E

Ch=1.

CE=1.

NFzD

YF (DD LT HORY«ORDELLTSHIRY) HP=HDRY

IF(DDaLT«HDRYORWZOESLT.HIRY) GOTO 5

CALL GEOM{S5+ADsHD+RO«CTDsDDele1eXD)

CALL GEOM{(S5+AESHEWRESCTESWDEr1rleXE) .

TIMZTIME-DTD ¢

CALL STORMIXDeTIM)

CALL OPHEAD -

CALL FRIC{VDe¢HDs FDvRDvREDvPECvIRDvloXD)

SFD=C({ 4) «FD*xVvC*ABS (VD) /(E{ 13)sRD}

JFC(ABS (XE-XD) «LTW«ACCUX) SFDE=C(8)

IF(ABS (XE~XD)«LT4ACCUX) COTO 8

7 SFDE=CU8)+(B(16)*{HD-HE) L (5)+B{12 )+ 2+ {(CD+VDsVD~-CE+VE+VE) /64 .4) /

8
9

12

17

18
19

${(XE-XD)*B8(11))+C(3)

IFCABS(SFD).LTJAPRS(SFDE)) COTO 12

SFD=SFDE

NF=1

DSE=SQRTICILI+(CU1 }~1.)+ VD *VD+C(1)+C(20)s(DD+C(I}/C(5}+0PH))

ALlZ({1.~C(1))*VD+DSQI*C(2)/C(5)}/DD

C7=C(7)«DTD/DT

SED=(SFD+SFDEY /2.

C1=Ct11)+DTD+(CCt2)+C(203 2{C(8)Y~SFD)I+CI26) /DDsCL19)+(CT+C(25)sClE )
$/7CIS)-CULIY*VD+DSQY*CLA)* C(5)+C(27)#C{13)/0D*(CE{1} «VD-DSQ)*
$C(S) +C(5)1+C(29)/CTD/DD(CU3)sCI{2)+CL{24)-C(1)+VD+DSQI*BI16)/B(10)
$1+HD*A 1+ VD

TIM=TIME-~DTE

CALL STORMIXE«TIM)

CALL OFHEAD

CALL FRIC{VEsHE FE sRE¢REEs RECy IRE» 10 XE)

SFE=ZC{ 4} sFE+*VE*ARS(VEY/Z(E( 13 }¢RE)

IF{ABS (XE-XD) «LTL.ACCUX)} SFDE=C(8)

IF{ABS(XE~XD} .LT.ACCUX) COTO 18

SFDE=C(8)+(Bl16)*+(HD- HE)/C(S)+8(12)"2t(C03VD‘V0 ~CE*VE*VE) /64 o4) 7
$({XE-XDY*B(11))sC(3)

IF(ABS{SFE)LT.ABS(SFDEY) €OTO 22

SFEZSFDE :
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22

NF=z1 ¥
ESQA=SART(C(L1)+(C(1)-14)=VEsVE+C(1)+C(20)*» (DE*CUS}/C(5)+CPH))
A2=({(1a~Cl{1))=VE-ESQ)I*C(9) /C(5)/DE

C7T=Ct7)*DTE/DT

SFEZ(SFE+SFDE) /2.

C2=Ct11)+DTE+(C{1)+C(20) *(C(8)~SFEJ+«C(26) /DEsC(19)s(CT7T2C{2513Ci6)

$/7CL3)-Cl1Y*VE-ESQ)*C(3)«C{5)+C(2T7)*+Ct19)/DEs(C(1) sVE+ESQ}=*

37
38

39

26

27

$CUS)+CU5)1+C{29)/CTE/DE*(CU3)sCL2)+CL24)-C (1)+VE-ESQI*BL16I/BL10))
$+HE« A2 4VE

HP={C1~C2) /{AL-A2) ,
VPZ(AL%C2-A2#C1) /(A1 -A2)

SFP=(SFD+SFE) /2.

IFUSFPeGTalaa ANDeVPLT.0) VP={YD+VE)/2.
CALL STORM(XP,TIME)

SFO=Ct 8) ,

IF(SF0.GT.0.) GOTO 37

cc=0.

GOTO 38

CC=C(36) +SFO»+C(3T7) -

IF(CC.LTa24a4) CCZ24,
QFLOWSVP+B(12)sHP*B(16)/C( 5)
QRAINZRMN/43200. +XP+E(11}

IF (N NE2NCHJ,AND .GFLOW.GT.1 «10+¢QRAIN) GOTO 30
IF(IDG.EGaloeAND «NeEQoNCH.ANDHP L,LE LHMIN) GOTO 39
6oT0 27

HPZHMIN

CT{KP¢2) =CTMIN

CALL GEOM{2¢AP+HPsRP yCTP +DPe 192¢XP)
VP=SFO$257.6%RP#RPsB(17) » 2/{CC+B (24 )%B(12))
CALL FRIC(VPyHP+FPsRPyREP+RECsIRP +2¢ XP}
FF=FP ;

SFZCU4 )sFP2VPsABS{VP }/ (B (13) *RP)

FFJ=FF

SFJUZSF

NF J=NF

RETURN

IF (HP. LE. HDRY) HP-HDRY

CALL GEOM{2+AP+HPsRP +CTP sDPy 1924 XP)
IFIRPLEBU2)6C(22) e ANDoXP oL TaDIST) VPSSF 0+257+6+RP «RP#B{17)s 22/

$(CCeBI24 1B (12))

30

CALL FRIC(VPyHP+FP sRPsREPy RECsIRP¢2¢ XP)

IF{N.EQ.NCH.OR.IRPNELB) GOTO 26

IF{SFO.LE.O.) GOTO 28

HMAXZ(CC#3(24 ) +RMN*XP#B( 11 ) /(25746243200 *SFO0} ) ¢s(1./3.)+C(5) /B{ 16

$1)

28
29

6010 2°

HMAXZRMN/43200.sTIME»B(11) /8(12)2Ct5)/B(16}

IF {HP. CT o HMAX) HPZHMAX
VMAXZRMN/43200.¢¥P+Bi11) /(HP «B(16)/C(5)1/B(12}
IFEVP. GT. VMAX) VFZVMAX

CALL GEOM(Z2+APsHPoRP+CTP +DPe1e2¢XP)

CALL FRICUVPsHP+FPsRP+REPs RECsIRP s 2y XP}

6070 26
END
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SUBROUTINE CONJ(XJ2¢Je VLLeHLL» VRReHRRv$)

EVALUATE THE CONJUGATE DIPTHS AND VELOSITIES OF THE DISCONTINUIT ¢

COMMON /817 B{u4Q}+ClUD)+Z(10) e TIME +OPHs NNoeN+NCHoRSL y CURVE ]

COMMON /B2/ H(27927¢2)oVI(2 7927921 9HLU2T+10+2) oHRI2T¢ 10423y H
SVRIZ27¢10+2)o VL (27910219 VI{27010¢219XI02791092) o T{27¢2792) v KNy NI H

COMMON /B3 / NKU27)eNJL27 )eDXsDTeDISToHMIN e VMINs ITYPE 9y T09GC(27020) s
$S+DS

O ONWN &N

13

$FREZ27¢10)eNFJUeSFJWFF U
K=ZXJ2/DX+1.39999
CALL STORMIXJ2+sTIME)
CALL OPHEAD )
CALL GECOMU2¢ALsHL(Ne Jos1) RLeTLoOLs1e1eXJ{ NoeJds1))
CALL GEOMU2+ARsHR(NvrJe1) RReTReDRe1e1sXJ{NoJe1))
IFtAL.GTL.AR) GO TO 3
CALL JL{XJZ2e¢JrVLLoHLLs $1201)
NUIN2JIZNF U
SLINvJI=SFU
FLINPJI=FFUJ .
CALL JRI(XJ2+JeVLL sHIL +VFR s HRR %13
RETURN
CALL JRIXJ2¢JeVRR+HRRev $13v 1)
NRIN+JIZNFU
SRINevJI=SFJ
FRIN'JISFFJ
CALL JL1€XJ22JeVLL sHIL sVRR+HRR »$13)
RETURN
RETURN 7
END
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SUBROUTINE CRISEC
LOCATE CRITICAL SECTIONSe IF ANY
COMMON /B1/ BL40)eC{H0)e Z(10)e TIME cOPHI NN osNsNCHeRSL ¢ CURVE
COMMON /7B27 HIU2792Te2) 9 V(27427 923 oHL(2T010+2) +HR({ 27410420
SVRIZT7010+92) o VL (270102 e VIE2T7e1002)e XJU27¢1002)0JTI12Te2T7 929 KN NI
COMMON /B3/ NK{Z27) sNJTU2T 3o DX oDTeDISToHMIN o VMINS ITYPE+I0+0C(27010% 0
$S+0S ’
COMMON/BE/AAL1+sBB1+CC1r SNKeIDG#SP1eXPGLsSP2sXP 62
COMMON /387 ACCUSACCUX sACCUY »HDRYCC
KNMZKN
TIFINSLToNCHeAND o IDGoERS1 ) KNMZKN=-1
DO 9 K=2sKNM
IF(JI(NIKe2)e6T0) GO TO S
IF{H(NsK22)oLT«HDRY*2.) €O YO S
KAZK~1 )
IF(HINYKAS2) L. ToHORY#2,.) GO TO 9
X=FLOAT(KA)*DX
CALL STORMIXe«TIME)
CALL OPHEAD
VB=VINeKo2)
VAZV(NsKA¢ 2)
CALL GEOMIU2+sABsHIN K 02 )e By TB+DB el 929X}
FREZFRTST(VB¢DBrOPHe CL1)+C(5)eC(9)+C {20191
IF(FRB)2+23
2 XCR=X
GO YO 4
3 X1=X-DX
CALL STORMIX1.TIME)
CALL OPHEAD i
CALL GEOMU2+sAAsHINSKA? 2) RAsTASDA#1e 25 X1)
FRAZFRISTIVAsDAeOPHoCU1) +C(5)2CU3)+C(20)s1)
IFIFRALGT.~ACCU) GO 10 9
NCT=0 '
XCRI={X¢X1)/2.
S CALL STORM(XCR1l.TIME)
CALL OPHEAD
AL=C((VB~VA)/DX} %22
IF{AL.LY.ACCU) GO TO 9
B1=2.*VA*(VB-VA)/DX~(DB-DA }»C(20)/DX+C{9)/C (5}
C1=VA#»2-C(20)+{DA*C(3)/CI{5)+0PH)}
DXCR={-B1+SQRT(B1«Bl -4 %A sC1))/(2.5A1)
XCR=DXCR+X~-DX
TFCABSIXCRI-XCR)IL T ACCUX) GOTO &4
NCT=NCT+1
IFINCToGTL20) WRITE(E: 1001 X1sX
100 FORMAT(® NO CRITICAL SECTION SOLUTION BETWEEN SECTIONS®eF7.8e¢® A D
$%9F7.4)
IF(NCT.6Ta20) GOTO 9
XCR1=XCR
G010 5
4 WRITE(6¢200) XCR
200 FORMAT(® CRITICAL SECTIMN LOCATES AT X="eFT7e4)
9 CONTINUE
RETURN
END

H
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SUBROUTINE CROSSUXBr JeIDWWVeDD+DXX+DTTCS) °

CALCULATE THE VALUE OF v AND H AT A POINT ON THE PATH OF DISCONTL
UITY IN THE XeT-FPLANE WHEN A DISCONTINUITY CROSSES THE GRID POINT
ID=1 ON REGION °*R"Y OF THE DISCONTINUITY

I0=2 ON REGION "L* OF THE DISCONTINUITY

COMMON /81/ B(#U)vC(QU)vZ(10)oTIMEvOPHvNN'NvNCHvRSLoCURVE

COMMON /B2/ H(27n2712)vV(?702712)0HL(2711012)OHR(Z7'1072)7
SVRIZ7-10-2)1VL(27'IUv?)cVJ(27v10|2)vXJ(Z?.IO’ZTvJI(27o27v2)oKNoNJ
COMMON /7B3/ NK(27)9NJ(27)vDXvDT'DISTvHMINoVMINrITYPEvIOoOC(Z7rlD)0
$SeDS

COMMON /B87 ACCUACCUX+ACCUY sHDRY,CC

DIMENSION T{2)sF(2)

IF{ID.EQ.2) GO TO 1

XBZ2=XB-XJ(NeJe2)

XB1=XB-XJ(NeJe1)

VIZVR{NeJo1}

V2=VR{Ne¢ Je 2}

HZZHR(Ns Jy 2)

H1=HR(Ns Jv 1)

60 T0 2

XBI=XJtN+J el )—-XB

XB2=XJ(NvJ»2)-XB

Vi=VLI{Ns Je 1)

V2=VL(Nv Je2)

H2ZHL{Ne Jv 2)

HIZHL(N» Je 1)

I=1 '

NCT=0

T(1)=(OXX-XB1) /{-XB1+XB2)

VVIVI+(V2-V1)+T(I)

HHZH1+ (H2-H1)«T(X)

DTYT=(1.~T(I))DT

DXX=XB1+ (XB2-XB1)+T( )

CALL GEOM(2+sAAsHHeRR T Ty DDelslexB)

CALL STORM(XBs»TIME}
F(I)IDXX/C(Q)—OTT*(C(I)tVV*CS*SQRT(C(l)C(C(ll—lo)'VV‘VV*C(I)‘C(ZB
$*{DDsC(31/C(5)+0PH)))

IFCABS(F(I))eLT<ACCU) RETURN

IF(I.EG.2) GO TO &

I=2

T2)=T(1)+0.1+DT

GO T0 3

NCT=NCT+1

IF(NCT«GT.20) SS=SQRT(-1.)

TTZUF{1) #T(2)-F (21T (1)) Z{F (1) ~FL2))

T(LI=T(2)

 TL21=TY

FL1)=F(2)
6o 70 3
END
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SUBROUTINE CROWN - .

FORMULATE THE EQUATICN OF THE TRANSVERSE PROFILE CF A ROAD SURFAC
COMMON /B1/ BU40)sC{uB)+ Z{10) ¢ TIME +OPH s NN ¢N eNCH R SL e CURVE

COMMON /B2/ HU27+270 21 yVU2T¢2742) e HL(27+1002) sHRI2701092),
SVRI27¢10+2)9VLI2T0 109209 VIL270 1092 )0 XJ(2T 2109210 T(27027 221 ¢KNoNIJ
COMMON/BE/AA2+BB1+CC1s SNK+IDGeSPL1sXPGLoSP2¢XPG2

COMMON /7B8/ ACCUsACCUX 9ACCUY sHDRY o CC

COMMON /B10/ DXCH+DXRS +DDXCHeDDXRS

DIMENSION Y{3)+Gi2}

DATA G/% CURB®+*CHANL®/
READ(5+1CD)INLeIDCs{Y(I)eI=193) s SUPEL »TRFCT»SPEED

FORMAT (215+6F10.0)

NL THE NUMBER OF TRAFFIC LANES

106 INDICATE THE TYPE OF BUTTER

1 CURB TYPE
2 GHANNEL TYPE

SUPEL=SUPERELEVATIONFT PER FT OF ROADWAY WIDTH

TRFCT=SIDE FRICTION {CORMRING RATIO) BETWEEN TIRES AND ROAD SURF,
SPEEDZDESIGN SPEED FCR.RCADWAY, MILES PER HOUR

RADIUSZRADIUS OF CURVATURE OF ROADWAY

READ(5+101) SP1sXPG1sSP2XPG2

SP1=CROSS SLOPE OF PAVED SHOULDER (3 TO 5 PERCENT)

XPG1=HORIZONTAL WIDTH OF PAVED SHOULDER {12 FTs» & FTs OR 2FT FORE
ACH LANE) :

SP2=CROSS SLOPE OF GUTTER OR MEDIAN (1/12 OR 10 PERCENT)
XPG2ZHORIZONTAL WIDTH OF GUTTER OR MEDIAN (3 FT OR {12-2+N0. OF
LANESY FT)

FORMAT(8F1U0.0)

IF(CURVE.LT.041E-5} €OTO 2

RADIUS=0.067+SPEED*SPEED/( SUPEL+TRFCT)

CURVE=1. /RADIUS

WRITE(GE+150) SUPEL 9TRFCT wRADIUSs CURVEs SPEED

FORMAT(/* THIS IS A CURVED ROADWAY WITH SUPERELEVATION = *»F5.3y °
SIFT/FT)eSIDE FRICTION = "+F5.3¢* RADIUS OF CURVATURE = °4Fi0s2¢° ¢
$FT)*/* AND CURVATURE = '+E8.3¢°% (RADIANS) FOR DESIGN SPEED = *,F5.
$1s° €MPH)®)

2 NKTEMP=NL#*12/TINT(CDXRS+0.001)+1
3 RAIZ(Y(31—2.2Y(2)+Y(1))/ 288,

10

30

BBIZ(-Y{3)+4.2Y(2)~3.xY{1))} /28,

ccizy(1}
TANZ—-{2.%AAL*FLOATINKTEMP-1)%DDXRS+8B1)
SNK=BED SLOPE AT THE END OF OVERLAND FLOW ON ROADRAY
THETAZATANCTAN]

SNK=SIN{THETA}
KNZNKTEMP+INTUL{XPC1+XPG2 W/ DDXRS+0.99939)
IF{INT{XPG1})eEQeD) GOTO 30

GOTO 31

SP2=SNK

GOTO 12

31 IF(SP1.LT.SNK} SP1ZSRHK

IFLIDG.EG-1) GOTO 32
GOY0 12

32 IF(SP2.LT.SP1} SP2=SPL

6070 12

12 UWRITE(G+200) NLoG(IDGI»(Y(T)6.=1+3)
200 FORMAT(/IZ+® TRAFFIC LANES HIGHWAY WITH "eAGe*TYPE GUTTER FLCOW®*/
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57
58
59
60
61
62
63
64

65

$* YUI)Z%eF5.3¢% Y(2)Z'4F5.3¢° Y(3)='eF5.3)
WRITE(Es202) SP1eXPG1leSP2¢ XPG2
202 FORMAT(® SP1 = "4F6alts® XPGl = *sFB8.3¢" SP2 = *WFBals" XPG2 = *y 8
$.3) ‘
WRITE(6v203) AA1+BB1.CC1eSNK
203 FORMATU(/* THE CCEFFICIENTS OF CROWN CURVE EQUATION ARE: "/
$® STeF9eB69" B ZT'eF3.69Y C T'sFTeBe® SNK =T oF3.6)
. RETURN '
END
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SUBROUTINE CS({SS+X1sX2e¢XCoXP ¢D1¢D2¢DCeV1sVZ4VC)
COMPUTE DeVsAND LOCATION OF C+ OR C- CHARACTERISTIC CURVE
SS=+1. FOR C+
$S=-1. FOR C-
COMMON /8B1/ B{40YsC(HO)s Z( 10 ) TIME »OPH NN +NeNCHoRSL s CURVE
COMMON /B3/ NK(27) sNJ(27 19 DX oDTeDIST yHMIN +VMINs ITYPE+I0+0C(27 4101
$S+DS
COMMON /B8/ ACCUSACCUXsACCUY +HDRY»CC
COMMON 7812/ NDEPTH
DIMENSION F(2)sXt2)
CLZDV¥/ ({X2-X1)«C()
C2=(X2-XPY/Z(X2~X1}
NCT=O
NDEPTH=O
I=1
XCII=(X2-XC)/{X2-X1) sy XCX2=-X{I)» (X2~-X1}
X(1)=0.4
1 XX=X(I) .
YCov2-XX»(V2-V1)
DC=D2-XX*(D2-D1}
XC=X2-XXs(X2-X1)
JFUITYPE.EQe240RITYPELEDa3) GOTO 3
GOT0 5
3 IF{DC.LY.04) NDEPTH=1
IF(DC.LT.0.) RETURN
S IF(DC.LT.HDRYY DC=HDRY .
DSAZSOERT(CILI*#(C(1)-1)+« VO sVC+C(1)+C{20)+ ADC+C(3)/C{5)+0PHY)
FLIN=C1s (Cl1}+VC+SSeDSQ)+C 2~ XX
IFLABS(F(I))LTLACCU) RETURN
JF{I.EQ.1Y GO TO 2
NCT=NCT+1
TF(NCT.CT.20) GO TO &
IFCABS(FtL)I-F(2)).LT.ACCUACCU} GO TO &
XX={F{1)#X(2}~F(2)*Xt1 ) /H{F(1Y~F(2))
X(11=X1(2)
XE2)=XX
IFCABS{X{1)-X(2))aLT<ACCUY RETURN
F{1)}=F (2)
GO0 TO 1
2 I=2
X(2)=0.6
Go 10 1
4 IF(ABS(FI{I))e0Tes1E-4), WRITELE200) FLT)
200 FORMAT(/® AT CS FULITF(2)="9E12.7)
END
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SUBROUTINE DBDY

SET UP DOWMSYREAM BOUNDARY CONDITION

COMMON /B1/ B(401eC(HUY»Z(10 )9 TIME »OPH y NN sN9sNCH sRSL » CURVE
COMMON /7B27 H(27 o2 T7¢2) oVi2T02792)¢HLIZ2Te10¢2)sHR{27e100¢2 %
SVRI2741092) o VLU2T7v102) e VULZ2 791092 )e XJIU27¢1002)9vJT27¢2T792)eKNeNJJ
COMMON /7B3/ NK(Z?)1NJ(Z7)vDX’DT'DISTrHMINvVMINiITYPEIIO 0C(27¢10)
$S0S

IF(ITYPE.NE.1<AND.N.EGe1 Y GO YO S0

KN1IZKN-1

IFINJUERQ.O) GO TOQ 5

DO 1 JJ=1leNJJ

JZNS =SS L

IFEXJUINsJe2) e GTaDIST-DXe N Do XJUNe J92 )L To DIST) GG TO 2
CONTINUVE

60 TO0 5

JTI{NsKNe 23 =1

JFLJIUNeKNsL)eEQL ) GO TO 20

IF(JI{NvKNy2) EQ.1} GO TO 10

DXI=DIST-FLOATVIKN-2)+DX .

CALL DPYI{H(NsKNel) sVINsKNe 1) sHINs KNI 91 JoVINeKNIo1)sHINsKNL 921}
SVINyKN1Iv 23 sDX1)

RETURN

X=DIST-XJINsJw2)

H2ZHINsKNe L)+ {HINe KN 10 1) -HINsKNv¢1) 3 X/DX

V2ZVINGKNe L)+ EVINsKNLe 1)~V ENsKNo1) )& X/DX

CALL DPYT{HENoKNol1) s VINoKNe1) sH22V2sHRINoJ92)sVRINeJo 2} X}
RETURN

TFAJI{NsKNs23cEGU¥ GO TO 22

XZDIST~XJI{NeJd92)

IF{JaLYT-NJJ} GO TO 21 .

X1=DIST-XJ(Nedpl)

HZZHIN eKNe 13+ THRIN o J v )-H{NeKNel} ) sX /X1
V2ZVINeKNe LI+ (YRINvJol )-VINeKNs1))aX/X1

€0 T0 15

X1ZDX~(DIST-XJINNJIJIel )}

HIZH{N KNI o2 J+{HLINeNJJs D) ~H{NeKNL 11} #DX/X1

VIZVINGKNL I +{VLINsNJIIe 1) ~VINeKNT »1 })2DX/X1

H2ZHIN KNI 1 )+t HLUNeNJJo 1) =H(NsKN1 o1 }) s (D X=X}/ X1

VZZVINGKNL 22 P+ VLINeNJII» D —VINsKNL1 1 )} # (D X-X)/X1

CALL DPTUHLeVIiIeHZeV2oHRI{Ne Jo 2) s VR(Ne Jr 2} X)

RE TURN

JF(VUINo NS I 1l Tollod GO TO 23

HIZHINsKNT v 3+ (HLI{NyNJIJe 1) ~HIMNo KNI ¢2 1} DX /{DX-DIST+XJININJIJo1))
VIZVIN oKMNT L+ {VLINs NJJe 1) ~-VINsKN1 91 )} 2DX/7{DX-DIST+XJININJIJs1}}
CALL DPT(HI1eVIsHINSKNLsL Y e VINeKNIv1) ¢HINeKN1s2) oV INsKNI92)0X )
RETURN

23 HZZHIN«KNo 11+ (HRINWNJJIs 1L I-HINoKNe1)1 «DX/{ DIST=XJU NI NJJI»1))

90

V2ZVAINKNo 13+ (VRINSNJIJ o2 1-VINsKNy13) *DX/U DIST-XJU HeNJJs 1}
CALL DPY{M(NoKNo1) sVUANsKNo 1) oH2oVZ s HINsKNLr2) s VIN ¢KN1e2) 90X}
RETURN

HINoKMN 92 ¥ =HI{N KN+l

VENsKNa2 JZVINosKNoi)

RETURN

END
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SUBROQUTINYT DPT(H1rVLsH2eV2 sH3I V39 X)

COMPUTE V- AND H AT THE DOWNSTREAM CRID POUNT

COMMON /B1/ BU40O)»C(50)9Z(20)+ TIME sCPH s NN oN N CH ¢RSL s CURVE

COMMON /B2/ H(2712712)vV(2712?12)vHL(27v1002)(HR(27vlﬂv2)v
SVR(27v1002)vVL(27v10v2)'VJ(27v1012)0XJ(2711U12)vJI(27v2712)'KN9NJJ
COMMON /B3/ NK(27)|NJ(27)'DX'DT'DIST'HMIN'VMIN'ITYPE’IOQOC(27'10)'
$S+DS .
COHMON/BQ/II(27':)1XI(27v2)-HI(27v2)vVI(27v2)vGI(27923vNI(27’2)v
SCTL2T792) s CH(Z2T42)12CVI2T7¢2)

COMMON /E5/7 NGU27927)18G(2 76271 sF U2 Te27) oNFoSEoFF
COMMON/26/AA1¢B31s CC1sSNKsIDGCeSP1+¥PG1eSP 29 XP G2

COMMON /B8/ ACCUsACCUXsACCUYsHDRY SCC

DIMENSION HH(Z)F(2)

IF{IDGeEQe1eAND o NaEGNCH} CTMINZHMINSB(16)/CI{SI/TANCASINISP2) ) /B (1
$0)

TIM=TIME-DT

CALL STORM(DIST,TIM)
CALL OPHEAD

CALL GEOM(2+A19H21eR1LeT1s01 +141+DIST)

X1zZDIST-X

CALL STORMIX1¢TIM)

CALL OPHEAD

CALL GEOMUZ2vA2oH2¢sR2+T2sD2s1919X1}

CALL STORMIX1+TIME)

CALL OPHFEAD :

CALL GEOM{2+AZsH3sRZsT3y03s1929X1)
FRN3ZFRTSTIV3sD3+0FHCU11+C(5)+CLA)yCL20)¢1)

IF(FRN3.LELU.) GOTO ©

CALL CS{1e9X1eDICTsXDeDIST +D2¢01eD0sVZ9V1sVD)

CALL CSU-1.¢X1sDIST#XE9DISTID29D1+DE sV¥24V 1y VE)

FOR SUPERCRITICAL FLOVW

CALL CEGS(VD»DD!VEIDE!V(N:KNDZ)!H(N!KNyZ)vXDvXEvDT!DT'DIST’

NG {NesKNJ)=NF

FGINsKMN)=FF

SGINeKN)Z=SF

HCHZHINsKNy2}

TFINCEQaNCHAND MK INN) G Ta 24 ANDIDELEGo1) CALL INBDY (2 +DISTyHCHe T,
$2)

CALL STCRMIDIST.TIME)

CALL GEOM{Z2sAeHINLsKNI2)ePsTeDele29DIST)
FRNZFRISTUVINGKN2}oDvOPHiCU1) 9CU5)eCIB3)sCL20)91)

IF(FRNeCTals) RETURN ’

FOR SUBCRITICAL FLCWs OVTRFALL CONDITION CONTRCL THE H AMD v

CALL STORMIDIST+TIM)

€2=C{9)

€C26=C(26)

C27=C(27)

€29=C{22)

CALL STORMIX1.TIM)

S=C(9)+CQ

C26=C(2613+4(2¢€

C27=CI27y¥+C27

C29=Ct201+C29

CALL STORMIX1,TIME)

CALL GEOM{2sA3eHZIRIsT 300391 ¢2eX1)
C2zC(21+Ca
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13

€C26=Cl26)+(C26

C27=C(27)+C27

€C29=C(291+C29

CALL STORMUIDISTTIME)

C3=(C{9)+C3) /4,

C26=(C(2E8)+C26)/4k.

C27=(C(271+C27) /4.

€29z (C(23)1+C221) /4, : :
I=1 . N
NCT=0O

HH(1 )=H1 ’ :
TJF(NeEGaNCHeAND e IDGafQ el eANDeHHIT} «LT.HMIN) HHIII=HMIN
JF{HH(I) e LTHORY) HHUTI)=HDRY

HUNeKNoZ JZHH( T :
TFINGEQaNCHAND o N (NN} oG Te 24 ANDIDCLEQel) CALL INBDY(2+DISTeHHII),
$TTTe2) )
IF(N.EQ-NCH.AND-IDC.EQ-I.AND.HH(I).LE-HMIN) CTENN+2)=CTMIN
CALL GEOM{2+AeHH(T )sRsTeDe1e2:DIST)

CALL STORM(DISTeTIME)

TSAT14T24T3+T 3 /4.
RIGL=B(11Y+(T*B(1UI«CI+(C26-C27)+C(18)/B{18)+C23/(BL10)I*C(5)))
VVZSART(C(2U) «(D2C(2)/C(5) +0PH]))
FOI)ZA3-A2+A-A1+DT/X# (V1A 1-V2%A2+VVIA-VI+A3)+C 9 -2.+DT*RIGL
IF(ABS(FLIN).LTLACCU) GO TO 13

IF(I.EQ.1Y GO TO 12

TF(AEBS(F(1)-F(2) ) LTLACCU=ACCU)IGO TO 13

NCT=NCT+1

IFINCT.GT.20) GO TO 20
HHH:(F(I)‘HH(Z)“F(Z)tHH(l))/(F(l’—F(Z))

HH (L )IZHH(2)

HH (2 }=HHH

FL1IZF(2)

G0 TO 11

I1=2

HH(2)=H3

G0 70 11

$SSz=-1.

WRITE(EL1D0O) N

FORMAT({* NO SCLUTION AT THE DOWNSTREAM END OF SECTION® 13}
TF{NEB3NCH) GO "TO 12

TJFASS(FITI))eGTe0s1E~4) SSZSQRTISSS)

HI{N2sKN92)ZHH( I)

Y{Ne KNe2)ZVV

NGINsKN) =2

CALL GEOM{Z2eAsHINeKN®2) e TeDe1s2+DIST)

CALL FRIC(UVINeKN2 ) sHINsKN92}2FFsRIRESRECIIR92¢DIST)
FCOIN+KN)ZFF
SGINsKNITC(4) «FF*sVINsKNo Z) *ABSTVINIKNe2)) 7{B(13)sR)

RETURN

END
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SUBROUTINE ERR( XD}
COMPUTE THE COMPUTATIONAL ERROR
COMMON 7B1/ B(QU)qC(QU)vT(lU)vTIHEoOPHvNNvNoNCHoRSLOCURVE
COMMON /7B27 HU27+2T7e62YoVI27027¢2)92HLI(2T910¢2) e HR(27910+2)
SVR(2Te10 2o VL2 7+ 109230 VI(2T91002)e XJU2T791092)eJT(27e27+2)sKNeN J
COMMON /B3 / NK(27)'NJ(Z7)vDXvnTvDIST!HHINvVHINvITYPE'IO'OC(27'10)l
$S+DS
COMMON /847 TT(27¢2) oXTU27T#2)1oHICZT92) oVI(Z2T+274QI(2742)eWI(27:2) s
SCY(2722) s CHI2T 219 CVI2T¢ 2}
COMMON /8B8/ ACCUrACCUXsACCUY +HDRYCC
COMMON /B10/ DXCH+sDXRS+DDXCHsDDXRS
COMMON /B14/ IWET(27)
CCMMON /78157 VO1+VT1LWIN1eVOUT1
DATA TTVT/-1./
DATA VIN WOUT+VO+VTvER1/Bes00900s0ar e/
VO=ACCUMULATED VOLUME OF WATER RETAINING ON THE GROUND AT NT=1
VIZACCUMULATED VOLUME OF WATER RETAINING ON THE GROUND AT NT=2
VINZACCUMULATED VOLUME OF WATER FLOWING IN FROM THE UPSTREAM END
GUTTER PLUS LATERAL INFL (W INCLUDI?G RAINFALL AND INFILTRATION
VOUTZACCUMULAYED VOLUME OF HATER FLOWING OUT FROM THE DOWNSTREAM
END OF GUTTER
ID=INDEX FOR OPTION OF COMPUTING ERROR
1+ COMPUTE ASSUMED INTIAL VOLUME OF WATER RETAINING ON THE
GROUND ONLY
29 COMPUTE INFLOWs CUTFLOWs AND FINAL VOLUME OF WATER RETAIN-
ING ON THE GROUND
3 FOR ITYPE 3 ADVANCING WAVE PROBLEM
49 FOR ITYPE 2 ADVANCING WAVE PROBLEM
NS=NCH+1 ’
GOTO (841+131¢21+931).+I0
IF(ITYPELEQ.1) GOTO 1
JF(ITYPE.EG.3) GO TO 30
IF(ITYPELEQ.5) 60 TO 1
RETURN
N=1
CALL PREP
Y¥J2=XJINeNJJI sl )/ 2.
CALL STORMEXJ2+TIME)
CALL GEOM(2+ALoHINSL vl }sFRL oT19D1lvls1le0,)
CALL GEOM{2¢+A2+sHL(N#1e 1)} sR2¢T24D2e¢lr 1o XJINyNJJe1) )}
VOS(AL+A2Y #XJ (N NJJe 1) *B(21)/2.2B(16)/B8(18)1/C(N)
VO1=VvOo/sB{21)/7EL16)+B (18}
RETURN

1 D0 25 NzZ1eNS

FCT=1.

IFiINJLTeNCH) FCT=DDXCH«B(16)/8¢18)
IF{NeEQe1aOReNsEQalNN) FCT=DDXCH/2.3B{16)/78B8(18)
JFINSEQGoNS) FCT=BI(Z1)}«B(1E)/BL18}
IF(NN.EQo1) FCT=1.

CALL PREP

TF{KN.LEe2) GOTO 40O

DO 10 KT2+KN

DX1=DX :

H2ZH{NK+1}

X=FLOAT(K-132DX
IF(N.EQ.NCHaORuKaLT«KN} (@ 7O 9
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IF(NN.EG.1) GO TO 9 ¢

IF(NJLT<NCH) H2=HI(N 1)
X=XI(Ns1} :

DXI1=XT{(Ny1)-AINT(XIC{Ns1) /DX)sDX
IFCHIN®K~191)eLTeHDRY* 1.0l « AND«H24LT «HDRY*1.01) GO TO 10
X1=X-DX1

IF(JI(NIK11) . EQGal) GO TO 4

X12=(X+X1) /2

CALL STORMIX12+¢TIME)

CALL GEOM(2¢sA1+HINsK~121)s R1L+T1¢D1s1s1+X1)
CALL GEOM({2¢A2¢H2+R2+T2s 022191 9X)

VOSVO+ (A1+A21/2,/C(3)sDX1sFCT

€0 YO 1D

J=1

HIZH(N+K=1+1)

DO & JJ=JeNJJ

IFIXJINIJS11) aCTeX1aANDa XS {NeJJr1) LEaX) GOTO 7
CONTINUE

X2zX .

HZZHI{N+K 1) .

IF(NN.EG.1) GO TO 8

TF(NJLTNCH.AND ., K.EQeKN) HZ=HI(Ns1)

60 1O 8

X2=XJINv JJ91)

HZ=HL(Ne JJe1)

X12=(X1+4X2)/2a

CALL STORMIX12TIME)

CALL GEOM(2+A1vH1eR1sT19DL 9191 9X1)

CALL GEOM(2+sA2sHZoR2 9T 2¢4D2 9141 ¢X2) . !
VOSVO+ (A1+4A2)/2./C(9 )2 (X 2>~X1)sFCT
IF(X-X2.LT.ACCU) GO T0 10

X1:=X2

HI1I=HR(Ns» JJ 1)

J=JJ+1

60 T0 S

CONTINUE

IF(NN.EQ.1) RETURN

CONTINUE

RETURN

vr=g.

VINZ2=g.

IF(ITYPE.E@.3) GO T0 35

N=NCH ‘

KX=NN

IF(NNLEQ.1) N=1

IF(NN.EQ.1) KXZKN

CALL GEOM{2+ALsHINWKXe 1) sR1eT1¢D2e1e1vC(21))
CALL GEOM{Z2sA2eHINKXe 2) sR2e72e¢02¢1v2+sC(21))
VOUTZVOUTH(V(NsKXs 1) *A21+VINsKXs2)2A2 )+DT/ 24
DO 24 N=1eNS

IF(ITYPELEQ.2.AND.IWET (N )-EQ.0) GOTO 24
IFtITYPE.EQaSoANDIKET(N)EG.T) GO TO 24
FCT=1.

IF{N.LT.NCH}) FCT=DDXCH*BI(16)/B(13)
IF(NeEGe1e0RNEQ.NN) FCT-DNXCH/2.#%B(16)/B118)
IFIN.EGLNS) FCT=R(21)+B(15)/8B(18)
IF{NN.EG.1) FCT=1.
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114
115
116
117
118
119
120
121
122
123
128
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
148
147
148
149
150
151
152
153
154
155
158
157
158
153
160
161
162
163
164
165
168
167
168
169
170

18

1se

12

13

14

15

I00=I0 . ,
10=0

CALL PREP

IF(N-EQ.NCH) €28=Ctz2e)’
IF{NN.EGs1) C28=C(28)

10=I00 .
VINZVIN+C28¢«DT -

IF{KN.LE.2} GOTO S50

DO 20 K=2+KN

X=FLOAT(K-1)*DX

DX1=DX

H2=HIN K22}
IFIN.EQaNCHaORJK.LTeKN) O TO 18
IF(NN.EQ.1) GO TO 18
IF(ITYPE.EQ.2) GO TO 18
DXI=XICN#2)-AINTIXI(N.2) /DX)+DX
IFENSLTANCH) H2=HI(N 2}
X=XI{Ns2)

IF(H(N-K—l-Z)-LT.HDRY#I.ﬂl.AND.HZ.LT-HDRY‘l-Ol) G0 TO0 20 .

X1=X-DX1 ’
TFIUT(NIKv2)eEQel) GO TO 16
X12=(X1+ XV /2.

CALL STORM(X12+TIME)

CALL GEOM(Z!Al'H(NrK—lvz)lelele'l'lel)
CALL GEOM(ZVAZ'HZvRZvTZtDZ'IIZDXl
VT:VY*(AI*AZ)/Zo/C(S)*DXI‘FCT

G0 Y0 17

Jz1

HIZH(NoK-1 42}

DO 13 JJ=JeNJJ '
IF(XJ(NDJJ'Z)oGToXloAND-XJ(N'JJQZ)oLE-X) GO0 TO 14
CONTINUE

X2=X

H2=H{NsK+2)

IF{NN.EGe1l) GO TO 15
IFANGLTeNCHAND o KoEQaKN) H2=HI(Ne2)
60 TO 15

X2=XJ(Ne JJ2)

HZZHLINs JJ ¢2)

X12=(X1+¢X21/2.

CALL STORMIX12.TIME)

CALL GEOH(Z:AlleoRl'TlvUI'IUZVXI)
CALL GEOM(20A27H2(R21TZ)02|1!2!X2)
VT:VT+(Al*AZ)/Z-/C(S)‘(XQ—XI)‘FCT
IFIX~X2.LTLACCU) GO YO 17

X1=x2 '
HIZHRINy JJ 02}

JTJJ+1

GO YO 12

X1=X-DX1

CALL STORM{X1+TIME}

CALL GEOM(ZOA‘H(NQK‘I!Z,lROT'D!l'Zle,
TY=T .

€26=C{26)

€C27=C(27)

CALL STORM(X+TIME}

H2ZH{N K 2}
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171

173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
183
190
191
192
133
194
135
196
197

1398

199
200
201

203
204

266
207
208
203
210
211
212
213
214
215
216
217
218

22

19

20

50

24

26

21

31

27

200

IF(NN.EQ.1) GOTO 22

TFINGLT«NCHJAND eKeEQaKN) H2=HI(Ns2)

CALL GEOM{2¢AvHZsR+T+Drl 921X}

TT=YT+7

C26=C26+C( 26}

C27=C27+C(27)

TIM=TIME-DT

CALL STORM(X1.TIM)

CALL GEOM(2¢AsH{NsK~12r1) R sTeDelelsX1)

TTZTT+T

C26=C26+C(26)

C27=C27+C(2T7)

CALL STORM(XeTIM)

HZ=H(NKo1)

IF{NN.EG.1) GO TO 19

TFENoLToNCHJAND s KoEQ@eKN) HZ=HI(N»1)

CALL GEOM(2¢AsHZ2sReT D2l sl eX}

TT=(TT+4T) /4,

C26=(C2€6+C(26) )/ 4.

C27={C27+C(2T)1/4.

VINZ2=VINZ# (C2E-C27 )+ TTsDTsDX1«C{19)+BL10)+B(11)/B (18 )+FCT

CONTINUF

IF(NN.EG.1) GOTO 27

IF(ITYPEL.EQ.3) GO TO 26

CONTINUE

VINZVIN+VIN2

60 YO0 27

VOouUT1=0.

VT1=VT/FCT

VINLI=VINZ/FCY

VT=VT1sB(21)*8(16)/B(18)

VINZVIN+VIN1+B(21)

VOUT=ZVOUT+VOUT1+B(21)

60 Y0 27

IF(TTTTLTa0e) VOTVD1

TTTT=1.

vI=vT1

VINZVIN+ VIN]

VOUTZVOUT+VOUT1

ERZ({VT+VOUT-VIN-VO )/ (VIN+VO)*100.

CERZER-ER1

IF(I0.EQe1) WRITE(GsZ200) EReCEReVOsVTe VINVOUT

FORMAT(/* ACC COMP ERR ="' sF8421"%s CURR COMP ERR ='+FE8e2¢'%
$ VO =% 9FT743e" VT = ¢F7e3s* VIN =*FT439" VOUT =y F7.3}

IFtIDLEQ.2) ER1=ER

TYTT=TIME

RETURN

END
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SUBROUTINE EVDT
EVALUATE YHE TIME INTERVAL *DT*

COMMON /B1/ B{40)+CUUB)I+Z(10)s TIME yOPHoNNoNsNCHoRSL s CURVE
COMMON /B2/7 H{27+27¢2) sV I2T+2Ts2)oHL{27+10+2) eHRI2T¢10¢2) s
SVRI2Te1092)eVLI(2791092)eVI(2701002)e XI(2T910+2)sJX(2T6¢27 92 s KNoNE
COMMON /B3/ NK(27) sNJ(2T7 }sDX DTy DIST-HHIN-VHIN.ITYPE-IO-OC(27-10)v
$S+DS

COMMON /B8/ ACCUsACCUX+ACCUY +HDRY »CC

COMMON /B1D/ DXCHeDXRS+DDXCHsDDXRS

COMMON /B13/ STR :

COMMON /B14/ IWET(27)

DATA NCT 70/

IFI(NCT.GT.0) GO TO 2

TFCT=0.1/( TIME+ACCU)

IFCITYPELNELL) GO TO 1

IF(C(4) el To0.0140RB(26) L Te9) TFCT=D.5
IF(TFCTL6T.1.) TFCT=1.

CALL OPHEAD

DTEQ:= DXCH/(l.*SGRT(C(ZB)#(1;+OPH)))/C(5)
DTMAXZDYEQ+TIME*TFCT

DTMINZ1.0E6

FACTOR=0.9

IFU(NCTeGTe1eANDo TIME .GToSTR) DTMAXZ{TIME~STR++2)/20.
NCT=NCT+1

100=I0

Io=o

NSTNCH+1

DO 10 N=1¢NS

IF(ITYPECEQ.2«AND.IWET(N ). EQ.D) GO TO 10
IF(ITYPE.EQ.5ANDJIWEY E{NJ.EQ.O) 60 TO 10

CALL PREP

IF(KN.LE.2) GOTO 8

DO 5 K=1 KN

IFIHI(NsK+1)eLTo1.19HDRY) GO TO 5

X=FLOATI{K~11%0X

CALL STORMIX+TIME)

CALL OPHEAD

CALL GEOM{2+AsH{NeKr 1) sR +ToeDelsleX)

TANZCUL) s VINIKsLJ+SQRT(CIL I #({ClL1)-2e eV INeKe1)s224CT1)+CI20) % (D¢
$C(9)/C(5)1+0PHY)

IF(ABS(TAN}.LTLACCU) GOTO 5

DTT=DX/TAN/C{3)

IF(DTT.LY.DTMIN) DIMINZ DTT

CONTINUE

TF{NN.EGo1) GOTO 11
LIFCITYPE.EQ.Z) GO TO 11

CONTINUE

DT=DTMIN*FACTOR

IF(DT.6T«DTMAX) DT=DTMAX

IF(DY.GT.DTEQ)Y DI=DIEQ

10=100

IFIDT.LT.ACCU) SSTSQRT(- 1)

RETURN

END
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SUBROUTINE FRIC(VVeHHosFo Pr REJRECsTReNT ¢X) ¥

EVALUATE THE FRICTIONAL COEFICIENT )
COMMON /B1/ B(40)+C(L8OY 2 Z(10) e TIME+OFHs NN ¢eNsNCH+RSLeCURVE
COMMON 78B37 NKU27) oNJ(27 Yo DXoDToeDIST eHMINVMINsITYPE2I0,0C¢(27+10)
$S+DS

COMMON /B8/ ACCUsACCUXsACCUY sHDRYCC

JR=REGIONS OF FRICTION CCEFFICIENT VS. .REYNOLDS NUMBER
SF=C(38) - :
CC=C(36)+SF*2C{37)

IF(CCalTo244) CC=24,

FMAXZ1a/ACCU#23

IF(HH.CT.HDRY*1.01) COTO 1

IR=Q

FZFMAX

REC=0.

REZCC/7FMAX

RETURN

RE=ABS{VV+R*B(14))

IF(RE-LT.ACCUY GOTO 20
FB2-1a/(2.%AL0G10{(2.38(2))1+1.74) %52
IFIR.LE.B(2)*C(23)) GOTO 15

RELS IS THE SOLUTION OF F=C/RE AND 1/SGRT(F)=2sAL OG10(RE*
SART(F ) +0. 404

IF(CCLE.28c) RELST4T78.22

IJF(CC.LE.24s) GOTO 4

RE1=500.

NCT=0 '
F1IZRE1-CC*(ALOGIO0(RE IV +ALOG10(CC)+0 404} s #2 '

F2=1.-2.*SQRT(CCI/(ALOG (104 )*SAGRT(REL))

RE2=RE1-F1/F2

IF(RE2.LTe.1.) REZ2=1.

IFCABSIRE1-REZ2).LTLACCU)Y GO TO 3

MCT=NCT+1

IF{NCTeBT+20) SS=SQRT(-1.)

RE1=RE2

GO YO 2

RELS=RE2

IF(C({23).LT.ACCU) GO TO 7

RELR IS THE SOLUTION OF F=C/RE AND 1/SGRT(F)=I»AL 0G1O(2+R/K)+1.7 &
RELR=ZCC* ({2 .3ALO0OGIU(2 e*R/CI23))+1eT74) 252

CHECK THE EXISTENCE OF RELS

IFIRELS.CY.RELR) GO TO 6

THERE EXIST BCTH RELS AND RESR

RESR IS THE SOLUTION OF 1/SQRT(F)I=2» ALOGI1O(RE*SGRT(F))+0.404 AND
1/SGRT(FI=Z2*ALOGIN(2*R/K)+1 474
RESRZZ2esR/CI23)¢( 2.4 AL CC10(2.%R/C(221)+1.T74)%10.%¢0.668
IF(RELLT.RESRY GO TO 7

F FOR TURBULENT FLOW ON ROUGH SURFACE

Ir=3

REC=RESR

Folo/(2e%AL0G10(2.2R/CIZ DI ¢1.T4)es2

RETURN

THERE EXISTS RELR ONLY

REC=ZRELR .
IFI(RELLT.RELR) GO TO 10 -

IR=S
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10

11

15

G0 YO §

RECZRELS

IF(RE.LT.RELS) GO TO 11
TURBULENY FLOW ON SMOOTH SURFACE
IR=2

FT0.1E-3

NCT=0
F1o-1./F42.%ALOGI0(RE*F) 40, 404
F2-Z1e/F% 3242, /7{FsALOG{104))
FNEW=F-F1/F2
IF(FNEW.LT.ACCU) FNEW=ACCU
IF(ABS(F~FNEW)LT.ACCU) CO TO 9
NCT=NCT+1

IF{NCT.GTa20) SSTSERT(~1.)
FZFNEW

G0 T0 8

FZFNEWsFNEW

RETURN

LAMINAR FLOW

IR=Y

F=CC/RE

IF(FeGTFMAX) F=FMAX

RETURN

IR=1

F=CC/RE

IF(F.GT«FMAX) F=FMAX

RETURN i

IR=E

REC=CC/FB2

F=CC/RE

IF(FeGTFMAX) FTFMAX
RETURN

END
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FUNCTION FRTYST(VsD+0OPeCLlsCSeCI»C20,ID)

THE EQUATION OF FROUCE NUMBER

ID=1 TO TEST FROUDE NUMBER

ID0=2 TO FIND FROUDE NUMBER

T1=C1l+ABS(V) .
T2ZSQRT(CL#{C1-1.)*V+V+C1eC20«{D+C3/C5+0P) )
GO YO (1+2),ID .
FRTST=T1-T2

RETURN

FRTIST=T1/72

RETURN

END
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SUBROUTINE GEOM(IDsAsYsReTeDsIDIMoNT9X)

COMPUTE THE MAGNITUDES OF CHANNEL CEOMETRIES

1D

IS GIVEN

IS GIVEN

IS GIVEN

GIVEN

IS GIVEN .

IS GIVEN TO FIND CENTROID HD (RETURNED B8Y R)

X O~ D <X>
o)
%}

Loa]
o -
N = HOOLE R R

FOR DIMENSIONLESS VARIABLES i
FOR DIMENSIONAL VARIABLES :
COMMON /B1/ BA40)}sC(40) 97010} s TIMEsOPH NN oN eNCH R SL s CURVE :

COMMON /B2/ HUZT7+279e2Y e V27027 92) s HLI2T+1002) ¢HRI 279103920
SVR(27+210021eVLI2701002) ¢ VIL2701092)0XIL27 210921 sJ T(27¢2792) s KNeN U

COMMON /B3/ NK(27)sNJ(271eDXoDToDISTrHHIN oVMINsITYPE 20 +0CI27+10),
$SeDS - .

COMMON /847 ITX(27¢2) XX (279s2)eHI(2792) s VI{2792)+QI027¢2YoWI(2752) ¢ :
$CTU2702) +CHI2742)9CVI2T42),

COMMON/BE/AAL+BB19sCC1eSNK+IDGeSPLsXPGLsSP2oXPG2

COMMON /387 ACCUsACCUX+ACCUY»HORY ¢ CC

COMMON /BS9/ TLI1CeZ)eTR(10+2)

COMMON /B10/DXCHsDXRS¢DDXCH ¢ DDXRS

CACALIAZ sASoUIT—(AlsUs*3./3.+A2¢U%U/2,+A3¢U}

GY(ALsA2sA3sUIS—(AL*UsU+AZ+U+A3) .

CSCALeAZe  UIZ(2,%A12U+A2) /ll,¢ALI+SORTI 4o sAlo AL #USU+G ¢ AL SAZ2U+A
$20A2416) 410/ Uc+SORTIALSAL) )SALOC{BasAT*AL* U+ AT+ A2+ #SART(AL#A
$1)%SART(Ho#AL*ALAURUS ¢4 # AL AZ 2 U+ AZ4A2+1e ) )-A2/ (4 <3 A1)2SGRT(A22AZ+
$11-1./(8.3SORT(ALI#AL) ) #ALOG(H ¥ AT+A2+4 . #SORT (AL* A1) *SQRT (A22A2¢10
£1) ‘

CHIALWAZ oA3 UITAL®AL3U+ 95, /5. +A1# A2+ Uaslio /2 .+ (A2* A242, 0 A14A3)sU*+3
$e/3e¥AZ%A32Ur U+ AZ2A3sU ;

IFIN.EG.NCH) GO TO 20

FOR OVERLAND FLOW (N.LT.NCH<AND.N=NCH+1)

IF(IDIMLEQ.2) CO TO €

60 TOl1s2e3+s4v5¢2)91ID

CHANGE DIMENSIONLESS PATAMETERS 70 DIMENSIONAL HYDRAULIC DEPTH O

DTA«B(18) 4

GO0 YO 11 :

D=Y=B(16)sC(9}/CL5) '

o YO 11 :

D=R+B(171} . ;

60 TO 11 '

SSZSERT(~1.) i

D=DsB(16)

G0 TO 11 i

CHANGE ALL DIMENSIGNAL PARAMETERS TO DIME NSIONAL HYDRAULIC DEPTH & .

GO TO (7s8¢9+10+11+8)91ID i

D=A !

60 TO 11 .

D=YeC( 9} :

G0 TO 11 :

Dz=R i

G0 TO 11 -

SSZSGRT{-1,)

A=D .
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103
110
111
112
113

Y=D/C( 9}
R=D ) '
T=1. ,
IF(ID.EQe5) R=Y/2.
IFCIDIM.EQ.2) RETURN
ASA/B(18)
YZY+C(5) /B(16)
R=R/B(17)
T=T/B(10)
D=D/B(16)
IF(ID.EQe6) R=Y/2.
RETURN
FOR GUTTER FLGCW
20 IF{IDG.EQ.1) 6O TO 40. .
CHANNEL TYPE GUTTER FLOW CROSS~SECTION OF CHANNEL IS 2FT CF
BOTTEM WITH 131 SIDE SLOPE 1FT HIGH
IF(IDIMLEQ.2) GO TO 26
60 TO (21922+23+24+25¢22)41I0
21 YZ(SQRT(1.+A+3(18))—1.)/C(5]
60 TO 31
22 YSY«B(161/C(5) .
60 TO 31 .
23 RZR*B(17)
60 TO 29
24 YZ(T+B(10)/2.-11/C{5)
S0 TO 31
25 D=D#*B(16)
60 TO 28
26 60 TO (27931»29+30+¢28+31)¢ID
27 YZ(SQRT(1.+A)=1.)1/C(5)
60 TO 31
28 YZ((D-1.}+SGRTID*D+1.))/C(5)
60 TO 31
29 YZ(1e4148%R-1e +SART((1e~1e414%R)I*¢242.¢R1)/C(5)
66 TO 31
30 Y=(T/2.-1.)/C{5)
31 DD=Y+CI(5)
A=(2.+D0D)*DD
Y=DG/C(5)
RZA/{2,4+2.8284+DD)
T=2.42.%D0D
D=A/T
IF(ID.EQ.G) RIDD*DD*{1,+00/3.1/A
IF(IDIM.EG.2) RETURN
ATA/B(18)
YZY+CU5)/3(16)
RZR/8(17)
T=T/B(10)
D=D/8(16) ;
IF(IDLEG.6) R=DD*DD*(1++D0/3.3/(As0(18))
RETURN
CURB TYPE GUTTER FLOW
40 XJJIZXJIINNJI e NT)
IF(NJI(NCH) . LT 1) GG To 58
IFUITYPE.EQeZ JAND<XoLTeXJJ) GO TO S5
IF(ITYPELEQ.2 JAND oX.GE.XJJT GOTO 52
54 XDX=X/DXCH
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114
115
1i6
117
118
119
120
121
122
123
124
125
1286
127
128
129
130
131
132
133
134
135
136
137
138
139
140
151
142

- 143

144
145
146
147
148
143
150
151
152
153
154
155
156
157
158
153
160
161
162
163
164
165
166
167
168
i63
170

DDX=XDX—-AINT{XDX~0.00001) !
KZXDX+1.99999

IF{KeGT«NN)} K=NN

IF{K.EQe1} GOTO 59

IFINJJ.EG.CQ) CO TO 58
IF{JUI(NsKeNT) «EQ.0) GO TO 58
XKZFLOAT(K~1) *DXCH

XK1=XK-DXCH

DO 55 J=leNJu

XJJ=XJINeJ o NT ) .
IFIXJJeCT o XK1 «ANDeXJJLTuXK) GO TO S5

55 CONTINUE

56

GO TO 58

IFIXJJ.LE.X) GOTO 57

IFUIXJI-XK1)aLTSACCU) GOTO 81

TITLOIoNTIH(CTUK=1 oNTI=TLAJoNTI )2 (XJJ-X) /7 (X JI-XKL )
6070 .61

81 T=TL(JUNT)

G0 TO 61

57 IFUIXK-XJJI.LT.ACCU) GOTO 82

82

58

59
61

62

486
47

48

TZTRUOJeNTIHICTLKINTI=-TREJoNTI) * {XIJ=X} 7 (X JJ=XK)

GOTO 61

T=TR{JINT)

G0TO 61

K1=K-1

TZCT(KIoNTI+{ CT(KeNTI-CTUKL1sNT)}sDDX

GO0TO 61

T=CTL{1eNT)

DXPG1=XPG1/8(11)

DXPG2=XPG2/B{11)

XXTI=C{22)+DXPG1+DXPG2-T+«E(1D)/B(11)

IF{XXT.CE.C(22}) GOTO 62

XXID=XXI*B(11)

HYZCY(AAL1+3B1eCC1eB(22))
ASZGA(AA1+UBLeCCLsBI22)3)-CA(AALIBB1¢CCLoXXID)
HS={GH{AA1+BB1sCC1sBI22))-GH{AALYBB1 +CC1ls XXID})/AS
SXZRSL-GS{AA1+BB2¢XXID}

T=T+8(10)

TANIZTAN(ASIN(SP1})

TANZ2ZTANCASIN(SP2))

SEC1=1./COS(ASINISP1))

SEC2=1./COS(ASINI{SP2)}

IF(IDIMEQa2) GOTO 46

CHANGE DIMENS IONLESS PARAMETERS TO DIMENS TONAL ONES
A=A*B(18)

Y=Y¥sB{16)/C(5)

R=R¥B(17)

D=D=*B(161}

THE FOLLOWING EXPRESSIONS ARE ALL DIMENST CNAL

GO TO tu47+48+43950+51e48)¢10

DzZA/T

GO Y0 51

IF(T.LEXPO2) D=Y*CU(5}~T/2.#TAN2 :

IF(TeGToXPG20 ANDaToLE o {XPEL4XPG2)) D=(2.2Y*CI5)~XPC2sTAN2Y*XPG2/T/
$2.+02.2Y2CUS)~2a2XPOZ#TAN? ~ (T-XPC2 )% TANL) =( T-XPG21V/T/2.
IF(TeGTulXPGI4XPG2)IDTH22Y4CI5)~XPO 24 TANZ) £XPE2/ T/2e4( 20 +Y2CL5) ~2
$0#XPG22TAN2-XPG1+TANI)«XPGL/T/2+AS/TH{ Y+ CIS)~XPG2sTANZ-XPG1+TAN1~
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171
172
173

174 -

175
176
177
173
173
180
181
182
183
184
185
186
187
188
189
isg6
191
1382
193
194
195
196
187
198
199

- 200

2u1
202
203
204
205
2086
207
203
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225

49

50

51 A=

70

71

52

SHY)*(T-XPG1-XPG2)/T . :

G070 51

IF(T.LE.XPG2) DzR*{TAN2/2.+SEC2}/(1.-R/T}

TF(TeGTeXPG2e ANDaToLE(XPCL+XPG2)IDZ U T~XPG2/2e)1/ TaXPG2+TAN2+ (T~XP
$621/ (2.4 T)»(T-XPG21+TAN1+XPG2+SEC2+{ T~-XPG2)*SEC1) *R/(T~-R) .

IF(TeGT(XPCI4XPG2))ID=U(T-XPG2/2e) /T*XPG2 sTANZ24 (T ~XPC1/2.~XPC2)/ T
SYPGL*+TANI+{T-XPGI-XPG2)/ T+ HY+AS/T+XPG23SECZ+XPG1s SECL+SX) *R/{ T-R)

CO0TO0 S1

SSZSGRT(~-1.)

T+D

TF{T.LESXPG2) Y={D+T/2.+#TAN2)/C(5)

TF(TeGTeXPG2s ANDaT LE < (XPCL14XPG2) ) YD+ (T-XPG2/24 }/TsXPG2eTAN2+ (T~
SXPG2)/(2.+«T) 2 (T-XPG2)«TANL)/C(5)

JF(TeGTo (XPCL4XPC2))Y=(D+{T-XPG2/2. )/TtXPGZtTAN2+(T-XPGl/Z.—XPGZ)/
ST+XPGI*TANI+{ T-XPC1-XPG2)/TeHY-AS/T) /C(5)

IF(TLLECXPGZ) R=A/(Y*C(5)+T+SEC2)

IF(T.GT.XPGZ.AND.T.LE.(XPGl*XPGZ))R:A/(YtC(S)+XPGZtSEC2+(T-XPGZ)vS_
$EC1)

IF(T.GTa{XPGL4XPC2)IRZA/Z(YSCIS)+XPG2+SEC2+XPG1+SE C1+SX)

JF(ID.LQ<6) GOTO 70 .

GO0TO 71 '

IF(TLEXPG2Z) R=((Y*C(5)-T+TANZ2I*#2,+T*+TAN2*(Y+CU5)~2./3.xT+TAN2))
$/12.3Y2C(5)-T+«TAN2)

IF(T.GT.XPGZ.AND.T.LE.(XPGl+XPGZ))R:(XPGZ#(Y#C(S)-XPGZ‘TANZ)**Z+XP
SCG2+XPC2* TANC# (YSC(5) -2 4/ 3¢ XPC2+TANZ ) #(T=XPG2Z)e (Y +C(5)-XPG2sTAN2~(
$T—XPG2):TAN1)t#2.+(T—XPGZ)‘tZ.tTAN1t(Y*C(5)—XPGZ#TAN2-2./3.‘(T—XPG
$2V¢TANIYYI/Z (2. 5A)

IFCTeGTe {XPGL4+XPCZ)IRTUIXPO2Z4(Y2CIS)-XPG2+ TAN2)*¢2/2.+XPC2«XPC2+TAN
$2t(YiC(S)—Z./3.tXPGZ*TAN?)/Z.fXPGlt(YtC(SI—XPGI#TANl—XPGZtTANZ)th
$./2.+XPG1tXPGltTAN1t(YtC(S);2./3.-XPG1*TAN1~XPGZtTAN2)/2.+(T—XP61—
$XPG2)#{Y2C(5)~XPCL*TANLI~XPG2sTANZ—HY )42, /2 +ASs(Y2C(S)-XPC1+TANI~
$XPG2*TANZ-HY+HS))/A

HCTD=R

IF(IDIMLEQ.2) RETURN

AzA/B(18)

Y=Y*C(5)/3(158)

R=R/B(17)

T=T/BL1D)

D=D/B{16)

IFUID.EQeB) RZHCTO2C(S5)/B(16)

RETURN

IF{IDJ.EQeS) Y2420

TSY*BU16)/C(5)sCCSIASINISP2))/SP2/RL10)

ZY«B{1G)/C{5)sT+8(10)1/2./7B(18)

DZA«B(18)Y/(T=+B(10)1/8116)

PZY/SP2+Y

RzA%B{18)/P/B(17)

IF{ID.EGsE) R=Y/3,

IF(IDIM.EG.1) RETURN

T=T*+B(10)

ATA£5(18)

C=D*«B{(16}

R=R*B(17)

RETURN

END S
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SUBROUTINE GOON
SUBSTITUTE THE VALUES OF ALL VARIABLES OBTAINED AT TIME LEVEL 2
INTO THE CORRESPONDING VMIABLES AT TIME LEVEL 1

COMMON /7B1/ BU40)+CUU0 )2 ZU10)e TIME+OPH I NN sN s NCHeRSLe CURVE
COMMON 782/ HU27927¢2)oV2 7927 92)eHL(2T+10+2)¢HR(27+10¢2)¢
SVRI27¢10+2)e VL2710 +2) 0 VU279 20¢2)e XJ{27¢1Ce2) e T(2T7927 9230 KNsNJJ
COMMON /BZ2/ NK(27)'NJ(27)lDXtDT'DISTvHHINoVMINtITYPEvIOvOC(27v10)1
£S.DS

COMMON /B4 / TX(27e¢2)oXIU2Tv23eHIL2Te2) sVI(2T92)eQI(27s23eMI{2T 92}
SCT(27¢2) s CHI2T92YeCV 2702}

CCMMON /BES/ ACCUACCUXsACCUY yHDRYCC

COMMON 7897/ TL(leZ)vTR(lﬂer

NS=NCH+1 .

DO 10 N=1eNS s

KNZNK(N)

DO 1 KZ1 KN

H{NeKe1)ZHINsKs2)

VINeKe1) =V(NIKe2)

JIINsKs1IZJUI(NIK»2)'

TFLH{N+K 91} .LToaHDRY) H(Nﬁ(tl) HORY

CONTINUE . Cor
IF(N<EQ4NS) GOTO 8

II(Ns1I=II(Ns2)

HI(NsI1JI=HI(Ns2)

QI {N1)=QTI(Ns2)

WIINe1)=WIENs2Z)

XTINes1)IZXIINY2)

VI(Ns1}=VI{Ns2]) )

CT(N+s1I=CT(N+2) '

CHIN»1I=CHIN,2)

CYINS1)=CVINe2)

TF{CTI{Ne 1) oL TAACCU) CTI(N+1)=ACCU20.39

DO 2 J=1+1Q0

XJUINoJ vl IZXJ{NoJ2)

VJINeJ o1 3IZVIINJ»2)

VLINsJ 91 IZVLU{NsJds2)

VRINsJ9»LI=VR{NrJ»2)

HR(NsJ o1 JTHR{NeJ92)

HLINsJs1)I=HLINyJ+2)

CONTVINUE

IF(NNEQ.1) CO TO 5

CONTINUE

DO 30 J=1.10

TLIJe1)=TL(U2)

TRUJr1IZTRIUe2}

CONTINUE

DO 20 N=1sNS

KNZNKIN)

DO 11 K=1e¢KN

HIN:Kes2) =0,

VINeKe2)=Q.

JI(NeKs2)=0

CONTINUE

JFIN.EQG.NS) GOTO 9 : )
CVINs2)=0.

CHINS2I=C,

194

e e

T ey

Eop VR




12

20

21

CTIN#2)=CT(Nel)
XI(Ns2I=XI(Ns1)
WI(Ns2)=0.
QI(N»2)=0.
VIIN#2)=0.
HI(N»2)=0.
IT(Ne2)=0

DO 12 J=1.+10
HL(N+Je2)=0.
HR(NsJ92)=0a
VRIN+sJ+2)=0s
VLI{NsJ+2)=0.
VJINsJ92 =0
XJU(NvJv2)=0s
CONTINUE
TF(NN.EQel)} RETURN
CONTINUE

DO 21 J=1+10
TLOJ»2)=TL(J 1)
TREJ+2)I=TR(Js1)
CONTINUE
RETURN

END
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SUBROUTINE INBDY(IDe XCHeHCHeTCHeNT)
SOLVE THE INTERNAL BOUNDARY-VALUF PROBLEM BETWEEN ROAD SURFACE
FLOW AND GUTTER FLOW \

ID=INDEX FOR COMPUTING INTERNAL BOUNDARY FL OW CONDITIONS

1 FOR GRID POINT

Z DOWNSTREAM

3 UPSTREAM .

COMMON /B1/ E(QU)vC(QU)OZ(IU)vTIMEQOPHvNN'NvNCHoRSLvCURVF
COMMON /827 HU2T92792)9VU2T7 92702} 2 HLI2T 01002} sHRE 2T ¢18¢27 »
$VR(27910!2):VL!27110:2!vVJ(Z?levZ)vXJ(27|1U12)1JI(27127I2)¢KN0NJJ
COMMON /837 NK(271oNJ (27 )4DXoDT+DISToHMIN s VMINS ITYPE 2 ICe0C{ 27910} s
$S+DS )

COMMON /B4/ II(27vZ)vXI(27'2)tHI(2712)'VI(27-2)001(27'2)’HI(2712)0
$CT(2742) s CH(Z2T42)4CV(2792) :
COMMON/E6/AAL+BB1¢CCLlsSNKsIDGSPLyXPGLvSP 20 XPG2

COMMON /BS/ ACCUsACCUX9ACCUY »HDRY CC

COMMON rs310/ DXCHsDXRS+»DDXCHsDDXRS

COMMON /Blu/ TWET (27}

DIMENSION F(2)sX(2) "

DATA TMIN/O.D1/ )

IFAZINDEX FOR ASSUMPTION OF INTERNAL BOUNDARY

1lv ASSUME CONTINUOUS WATER SURFACE
2¢ ASSUME DISCONTINUQUS WATER SURFACEs IF ANY

IFA=1

DXPG1=XPG1/38(11)

DXPG2=XPG2/3(11}
IF(ITYPE.EG.Z.AND.ID.EG.1-AND.H(NCH:NvZ).LT.HDRY‘I.Dl) RETURN
IFCITYPELNE <5 .0ReID.EQe2) GO 70 1

XW=TIME+C(30)

PUZCl21) ~XW

Niz=N i

IF{ID.E£Q.3) N1zZ1

XNZFLOAT(N1-1)+DXCH

IFUXNSLT.PW) CTIN142)TACCUs0.99

IF(XNLT.PW) RETURN

IFINN.EGel) SSS=-1.

IF(NN.EQ.1) SSSTSQRT{SSS)

NNNZ=N

DISTT=DIST

GO TO (7+698)+ID

N=1

GOTO0 7

N=NN

IF{IDG.EQR.2) GO TO 30

K=NKIN)-1 )

M=K

XKZFLOAY (K-2) «DXRS

CALL STORMUXK +TIME)

HKKKZH{NsK-1v+2)

VEKKK=ZVINsK=1+2)

NKKK=U |
IF(B(ZE)oLTuACCUaAND-H(NvK—lvl)oLTol-l'HDRY’ NK KK =1
IF{NKKKeEQL1) HINeK=1¢2)ZH{NyKs2)

IFINKKKoEQeL) VINeK=102)=VINeKe2)

XKZFLOAT({K-1)*DXRS

XK1=XK-DXRS
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113

10

HHZH(NCHN»2)

Y22=AA1«{C(22)+3(11) )52, +BBltC(22)tB(11)4CC1

IFLIFACEQ.1) GOTO 10

IF(II(Nv1).EQ.D) GO TO 15

THERE IS A DISCONTINUIYY BETWEEN ROADSURFACE FLOW AND CHANNEL FL &

XI(Ns2)SXI(Nes1)+DTsWIINs 1)

Y¥I= AAlt(XI(NvZ)*B(ll))t*Z.fBBltXI(NvZ)tB(11)+CC1

YHZYXI-Y22

CALL STORM(XI(N+2)sTIME)

IF(XI(NIZY 4GE o C{22)+0XPG11 ) HRRTHH~-TAN(ASINISP2) )+{C{22)+DXPG1+ DX
SPG2-XI(Ne2))*B{11)4C(5)/B(156)

TF(XI(Nv2)oGECUZ2) e ANDa XTI Ns21 oL To{CI22)+DXPG1}) HRRIHH-TANCASIN(
$SP1))t(C(?2)+DXPC1—XI(N-2)ltB(ll)tC(S)/B(lG) TANCASINISP2)1)+DXPG2+»
$B(11)+C(5}/Bt15)

IFIXI(Ne2YolLTC(22)) HRRZHH-YH2CUlS)/B(16)~TAN(ASIN(SP11}*DXPG1+8{1
$11*C(5)/BU1a)~TAN(ASINISP2))1«DXPG2+B(11)+C(S)/R(16)

CALL GEOM(EvARR+HRReHHR» TRReDRRv1¢2¢ XI{ Ne2) )

DXK=XITI(Ne2)-XK

HLLZH{Ne¢Ke 21+ (H(NsKe2)~H{Ns» K-1+2) ) #DXK/DXRS

VLL:V(N.K-2)+(V(N'KyZ)—V(N3K~152))aDXK/DXRS

CALL GECMUGB+ALL HLLYHHL s TLL sDLL 92 92¢XTINv 2})

IFCALL*ARR.LT«0.) GO TO 10

VRRZVLL~ABS{ALL=ARR)*SQRT(C(1)C(20) 7UALL sARR)* (({ ALLsHHL-ARR®HHR
$/7CALL~ARR)$(C(3)/C(5))*x2+0PH))

XJT=ZLALL*VLL-ARR#VRR}/Z/{ALL-ARR)

TF(HRR~HLL) 9¢10+3

FRLEZFRTSTU(VLL=XJT)sDLL1OPHeC{1)eCIS)sC(3)sCL20)91)

FRRZFRTSTULVRR=XJT I +sDRR1OPHeC(1) v C{S5)}eC(3)+CL20)»1)

IF(FRLeLT.0se OR.FRR4BT0.) GO TO 10

HI(Ns2)=HLL

VI{N»2)=VLL

WICN»2)=XJT

GICN+2)=ALL*VLL

ITI(Ns2)=1

CHUN+2)=HRR

CVINs2)ZVRR

GO 10 12

FRLZFRYISTO(XIT—VLL I sDOLL +OPHeC(1) «CLS32C(3)sC(20321)

FRRTZFRIST{U{XJT-VRR)I+DPRICPH+C(1)sClS5)sC(2)eC120)+1)

IF(FRLeGT aOee ORFRR4LT«0&) G070 10

GOTO 4

FOR CONTINUOUS WATER SUUFACE

YXKZAAL# (XK*B(1l1))*%2.,+3P1eXK+B(11}+CC1

YKZYXK~-Y22

IF(XKeGE«(C(22)+DXPG1)) HK=HINoKe2)+TANIASINISP2) )»(C(22)4DXFPG1+DX
$PG2-XK)*B(11)+«C(E)/B{16)~HH

TJFIXK.CEeCI22) e ANDaXK LT {C{22)4DXPG1)) HKZHINsKe 2)+TAN{ASINISP1))
$2{C{22)1+DXPG1-XK}*B(11)+C{5)/Bl16)+TANCASINISP2)) «DXPG2+L{11)*C(5)
$/8(16) ~HH

IF(XKoLToaCl22)) HKZHINsKe2Z J+YK+C(5)/B(16) +TANT{ASINISP1))sDXPG148B(1

$11+C(51/8{16)+TAN(ASIN(SP2) )+DXPG2+5(11)*CI5)/B(16)-HY
YXKIZAAL*(XK1+B(11))#+2,4EB1*XK128{11)+CC1

YK1ZYXKL-Y22

IFIXKL1eGE{CU22)+40XPC1Y) HKITHINsK-1+2)+T AN (ASINISP2))5{C(22)4DXPC
$1+DXPG2-XK1)#B(2121)+C(S5) /P 16)-HH
IFU{XKLeGELC(22) aAND o XKL ol To {C(221+DXPG1)) HKIZHIN ¢K~1+2)+TAN{ASIN(
$SP1) )=+ (CU22)+DXPC1 XK1} *«E(121)+C{S)/BL16)+ TANIASIN (SP2))*DXPG2+B (11

197
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114
115
116
117
118
119
120
121
122
123
124
125
126
127
123
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
145
187
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
16

167
168
169
170

13

11

12
121

13
14

15

18

$¥sCL5)/B{16)-HH ¢

TFIXKL1eLTeC(22)) HKIZHINGK~192)+YK12C(5)/BU1IG)I+TAN(ASIN(SP1))sDXPG

I'B(ll)'C(S)/B(lG)*TAN(ASIN(SPZ))*DXPGZ*B(ll)*C(S)/B(lS)—HH

TF{HKLTe0.) K=K~1

IF(K.LE.O) GOTO 19

IF{HK.LT+0e) CO TO 5

DXK=HK#*DXRS/{ HK1-HK)

XI(N22)=XK+DXK

CYMINZHMIN*S8{16)/C(5)/TAN{ASINISP2)) /8(10)

TF(XI({Ne2)LEOs) XI(Ns2)}ZACCU

TF(XI(Ne2)oBE(C{22)+0DXPC1+DXPG2~CTMIN*B(10G)/B(11))) XI(N+2)=Ci{22)
$+0XPGC1+DXPG2~-CTMIN*8110) /B(11)

DXK=XTI{N+2)-XK

HI(N-Z)‘H(NvaZI-DXKﬂ(H(LOK ~1¢2)-HIN+K»2) ) /DXRS

TFUIHI(N®2) e LT «H(NeKo2)) HI(Ns2)=H{(NsKe 2)

CALL GEOM(2+AI+HI(N#TYeRI+TIsDIv1v2¢XI(Ns2))

VI(Ne2ISVINeK1Z2I-DXKs(V(NeK—1e2)-VINsKe2))/DXRS

TF(VYIING2Y ol ToVINsKe2}) VIINI2ITVINeKe2)

UIIN?2)=0.

GTII(Ns2)=VIINe2)4AT .

IT{N+y2)=0

CTIN«2)=(CE221+DXPGL+DXPC2~XT(Ne2))&B{(11)/B (10}

DIST=XI(N2}

NK(N)ZDIST/DXRS+1.998999

KN=NK (N}

KN1=KN-1

DO 13 K=3+KN1

TF(HINsK+2).GT.HDPY/2.) GOTO 13

DXK=XT(N+2)}-FLOAT(K~-2)sDXRS

HINsKe23ZHINsK~-192)4+{HI(Ne2)~HINeK~1+2) )% DXRS/DXK

VINeKe23SVIN K~192) +(VIINs2)~VINoeK~192)}3 DXRS/DXK

CONTINUE

TF(NKKKsEQel) H{NsM- 102)’HKKK

IF(NKKKoEQal) VINeM=~192)=VK KK

N =N NN

KNZNK{ND

IF{N.EQeNCH) DIST=DISTT

RETURN

FOR GENERATION OF DISCONTINUITY

IT1

NCT=0

X{1I=XT(Nel)-XK .

HLLZH(Ne K+ 21— (HI{NsK~1e2)~-H{Ns+Ks2} )+ X(T}/DXRS

VLLZVINsKe 2) - (VINs K~ 172)—V(N1K12))‘X(I)/DXRS

XEZXK+X{T)

YXESAAls {XE«B (11))#x2,+BB1%XE«B(11)+CC1

YEZYXE~Y22

IF{XEGCELIC(221+DXPG1+DXPG2)e OReXEsLEDe) GCTO 10

IF{XE.GEL{C{22)+4DXPC1)) HRR=HH-TAN(ASIN(SP2))slC(22)+DXPG1+DXPG2 X
$EY=B(11)+C(5)/2(16)

IF(XEeGECU22) e ANDeXFolLTofC(22)+DXPG1}} HRRZHH-TANIASIN(SPL})={C(:
$2)+DXPC1-XE}*B(11)sC{5)/BI16)~TANLASINISP2) )+ DXPG2¢B{11}2C(5)/B(1¢E
$)

IF(XE LT.C{223) HRR=HH- YEtC(S)/B(lB)-TAN(ASIN(SPl))'DXPGI*B(II)*CI

531 /BL16) -TANCASIN(SP2})*PXPG2+B(11)+C(5)/B(16)

CALL CEOM{GsALLsHLLoHHL o TLL oDLL ¢1 9 2¢ XX)

CALL GEOMI&6eARR+HRRelHRe TRReDRRe1+¢2s XX)

198
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171 CALL STORMIXEsTIME)

172 CALL OPHEAD ¢

173 IF(ALL*ARR.LT 0.} GO TO 10 .
174 i VRR=ZVLL-ABS(ALL—ARR)*SART(C{1}*Cl20) /(ALL *ARR)* (( ALL3HHL-ARR*HHR }
175 . $/7(ALL—ARR}I*(C(S)/C(5))%%2+40PH})

175 XJT=(ALL*VLL-ARR*VRR)/{ALL—-ARR)

177 IF(HRR-HLL)}25+10¢25

178 25 FAIN=XI({N«1)}+DT*XJT/2.-XE .

i79 IFCABSIF{TI))aLT-ACCU) GO YO 18

180 IF(I.EQ.1) GO TO 17

181 . NCT=NCT+1

182 IF{NCT.CGT.20) €O TO 10

183 TFUABSIFUL1-F (2} ).LT.ACCU+ACCU) GO TO 20

184 : XX sX(2)-F (2> X{1)V/LFLLY-FL(2))

185 Xt1)=x12)

186 : X{2)=xX

187 FL1I=F(2)

183 G0 TO 16

183 17 I=2

180 X{2)=X(1)=1.1

131 G0 TO0 16 .

182 20 IF(ABS(F(I))aGT.10.+ACCU) WRITE(E+202) F(I}

133 202 FORMAT(s* AT INBDY F(I1}=F(2)='e£15.8)

194 18 IF(HLL.GT.HRR) GOTO 26

1385 FRLZFRTIST((VLL-XJT) eDLLsOPHsC(1)sCtS)sC(S)»C(20)01)
186 FRRZFRTST{(VRR-XJTIsDRReOPH¢C(1)sC(S)eC{3)rCl20)91])
197 IF(FRLaLT . 02e OReFRR4GT.0.) GO TO 1D

193 6070 27 °

1389 26 FRLSFRTSTUAXJIT-VLL) oCLL#COPHeCLL1) 2 CU5}4C(9)+,C(20)e1)
240 ' FRRZFRTSTUIXJT-VRR}+DRReOPHsC(1)»CU(5)sC(9)eCL20)+1)
201 IF(FRLoCT.0:0 ORFRR.LTW40e) GOTO 10

202 27 IFIXELGEL(C(22}+DXPG1+DXPG2)eORaXEoLELOe) GOTO 10
203 XI{Ne2)=XE

204 G0 T0 4

205 c FOR CHANNEL TYPE GUTTER FLOW

200 30 CALL PREP

207 CALL DBDY

208 XItN#2)=XI{Ns1)

203 HI(N2)=HINsKN»2)

210 VI(Ny2)=VINIKNs»2)

211 CALL GEOM(2+AIsHIUNS»2)sRI+TIsDIe1e2¢DIST)

212 QI(Ns2I=AIsVI(N»2]

213 II(N»2)=D

214 N=N NN

215 KNZNK{N}

216 TEINJEQeNCH) DIST=DISTT

217 RETURN

218 END

199
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SUBROUTINE INFLY{IDe TMLS}
COMPUTE INFILTRATION RATE
COMMON /B1/ B(QD)vC(QD)nZ(10)OTIHEODPHONNON'NCHvPSL'CURVE
COMMON /7B8/ ACCU+ACCUX »ACCUY +HDRY «CC
COMMON/B16 /AAA3BRsCCCoTOe RTOIRMNORAYV
COMMON/BLIT/FINFsPETTAeALFHASTO» TP e VSFe SPT .
INDEX IDZ1s READ AND WRITE THE INPUT DATA FOR SOIL INFILT. PARAMTS
29 COMPUTE TNSTYTANT INFILTRATION RATE
3e COMPUTE CUMULATIVE INFILTRATICN
USE THE GENERALYZED KOSTIAKQOV INFILYRATION EQUATION
FRATEZFINF+BETTAs(TIME-T Q) +x (—ALPHA)
FCR FRATE TO BE ALWAYS ZEROy SET FINF-0. AND BETTA<O.+ REGARDLESS
OF TO AND ALPHA VALUES
FRATEZINFILTRATICN RATEs IMo/HR
FINFzFINAL INFILTRATION RATEes INL/HR
SPIZPOTENTYIAL INFILTRATIONs INCHES
BEYVAs TOe ALPHAZINFILTRATION PARAMETERS
TP=TIME OF PONDINGs MINUTES
TP MUST BE GREATER THAN TO OTHERHISE INVALTID
ALPHA VALUE MUST BE LESS THAN UNITY AND GREATER THAN ZEROs» EXCLUS.
THULS=DIMENSICNLESS TIME :
RMN=TEMPORAL MEAN RAINFALL INTENSITY s INe./HR
VSF=CUMULATIVE INFILTRATION VOLUME PER UNIT SURFACE AREAs INCHES
G0 T0(1v2¢3)51D
READ{S5 +100) FINF+BETTASALP HA+TCQeSPI
FORMATI(8F10.0)
COMPUTE TP AND TO FROM RAINSTORM AND SOIL INFILTRATION PARAMETERS
DDT=TD*60,+8(12)/8(11) /210
TFPOL=DDTY
CALL RAIN(3»TFPDL)
IFC(RMN-FINF).LE.D4) GOTO 15
IFt0. Z*SPI*(I.—ALPHA)-GT.Oo) GOTO 25
BETTA=C.
TTRY=C.
GOT0 26
BETTA= (O, Z*SPI*(le~kLPHA))t¥ALPHA‘(RHN FINF)**(I.—ALPHA)
TTRYZ1e/ (1o~ ALPHA)Y S (EETT AZ{RMN-FINF) Je=2 (] o/ AL PHA)
TF{TTRY*«60.*B(12)1/B(11).CT.TFPDL) GOTO 15
NCT=0
J1=TFPDL~DDT
T2=TFPODL .
TFPOL=T1+(T12~-T1) 2.
NCT=NCT+1
IF{NCT GTe50) SS=SQRT(-1.)
IF{T2~T1)LT100.+ACCU) GOTO 18
CALL RAIN(3TFPDL)
IF{{RMN=-FINF)«LE.O.) GOTC 17
YF(0.2*SPI#{1.-ALPHA).GT e} GOTO 35
BETTA=O,
TTRY=0.
6OTO 36
BETTAS{O0.2+SPIs{1e-ALPHAY) ¢x ALPHA(RMN-FINFI*+«{ls.~ALPHA)
TYRYZ1e/ {1a~ALPHAY* (RETTA/(RMN-FINF}) J*2 (1 ./ALPHA)
JFCABSITTRY+*60.+B(12)/B{ 11 }~-TFPDL) «L T4 100 .+¢ACCU) GOTO 18
IF{TTRY*60.,+«B(1231/B(11}).6T.TFPDLY GOTO 17
T2=TFPDL

200




'60TO0 14

17 T1=TFPDL : '
GOTO 14 .

15 IF{TFPDL.GE.TD#60.#B(12)/8(11)) GOTC 13
TFPDL=TFPDL+DDT
€0TO 16

18 TP=TFPDL*B(11)/8(12)/60.
COoT0 20

13 WRITE(E.150)

© 150 FORMAYI(/°® THERE IS NC RUNOFF ON SIDESLOPE )

TP=Z1./ACCUsACCU
20 TOZALPHA*TP
WRITE(€e 200) FINFeBETTA9ALPHA«TOs TPy SPI
200 FORMAT(/* SOIL INFILTRATION PARAMETERS ARE FINF = ®9F8.2+° (INo/H

$) BETTA = ®¢F8.2+" ALPHA = "+¢FBe2+" TO = *+E10e4s " (MING) TP = %k
$10.47* (MING) SPI = *sFB.2s' (INCHESI')
RETURN

Z TST=TMLS+B(11)/B(12)/60.
CALL RAIN{Z2+:TMLS)
IFCTSTLESTP) B{Z7)=B(32)
IFITSTGT.TP)Y B(Z7 )= FINF#BETT!'(TST-YO)#‘( ALPHA)
RETURN
3 CALL RAIN(ZsTMLS)
RMNSZRMN
TPL=TP+60.s8(12)/B{11)
CALL RAIN{3+TPL)
RMNP =R MN .
TST=TMLS+B{11)/B(12)/60.
TFLTSTLE.TP} VSF=RMNS*TST /60,
IF(YSToGT«TP) VSFZRMNP*TP/60+(FINFe A{TST-TPI+BETTA/(1.-ALPHAY=( (TS
$T-TO)*%( 1. -ALPHA)-(TP-TO)*+*{1.,-ALPHA))} )/E0.
RETURN
END
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SUBROUTINE INPT

COMPUTE V AND H AT. INTERIO R GRID POINTS

COMMON /7817 BU40}eC(u0}e2{103 9 TIME +OPH s NN o NeNCH ¢RSL » CURVE
COMMON /B2/ HU2Ts2792) oVID2Te 2T v2) 9 HLI27v20+21vHRI27¢10v2130

SVRI27010¢2 o VL 4270100200 VW2 70109200 XJU27010¢2)eJT{2792792)eKNeNSJ

COMMON /B3/ NK(Z27) oNJ{27 JeDXsDTeDIST +HMIN+VMINs ITYPE +I0+0Ct27910%0

$S:DS

COMMON /B4/ TTI(27+23+eXI(27T v219oHI(2762) o VI (2T e2)eQT(279239MI(2Te2} 0

SCT{2702) oCHIZ2T e239CVI27+¢2)

30

35
36

37

38

COMMON /7BS/ NGU27¢2719SG(2Tv27)eFGL2T7e27) sNFoSFoFFF
COMMON/BGE6/AAL¢BB1sCC1s SNKeIDGe SPLo XPCLl oSP 20 XPG2
COMMON /7B8/ ACCUACCUXsACCUY+HDRYCC
COMMON /7B10/7 DXCHsDXRSsDDXCHDDXRS

COMMON sBias INETI27) . !
DIMENSION YW{2)+FF(2)

LOCATE THE MOVING DISCONTINUITIESe IF ANY
IFIITYPESEG.1) GC T0O 1
IF{YTYPELEQ42.ANDoNLLTNCH) GO TO 30
TFUITYPELEQsSANDaNolLTeNGH) GO TO 30

G070 1

TFITIWETI(NILEQ.1} GO TO 1
XNZFLOATE{N-1)sDXCH

XW=TIME+«C{ 30}

PHZC{21) -X¥

IFiXH.LTaXN.ANDLITYPE.EQG2 } GO TO 32
IFLITYPESER5«ANDPU.GCTo N ) GO TO 32
HOZTIMES«C(26)+C(19)2B(113)+C(5)/B(16)
HNZHOs {XU-XN}/XW

JF(ITYPECEQaS) HNTHO® {XN-P W) /XN
JF(HN.LT«B{31)2HMIN)} GO TO 32

DO 31 K=1e¢eKN

HUNe K9 2) THN

XK=FLOAT (K—1)sDXRS

CALL STORM{XKsDO.)

NCT=0

I=1

VV{i}=0.1

CALL GEOM{Z20sAoHN +RoT sD sl #1 #1XK)

YNZVV(I)

CALL FRIC{VNsHNeFeRsyREsRFCoIRs 1eXK)
FFIII=CU8Y~-C(u)+F/B(1Z)s P S{VYNI*sVN/R
JFCABSIFF{I))LT.ACCUIGDO TO 38

IFtI.EGa1Y GO TO 37

NCT=NCT+1

IFINCTCGT.50) GO TO 38
YNZ(FF(1)sVVI2)-FF{23sVV 1 }))Z(FF{1)-FF(2))
Yvili=vviz2}

VV{2 3= VN

FF{1IZFF(2)

€0 Y0 36

I=2

vyYizizg.0001

€0 T0 35

ViNeKe2) =VN

CONTINUE

INETINIZL
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‘32

33

(2]

51

34

IF(N;EQ.NNaAND.ITYPE.EQ.2) ITYPE=L :
IF(ITYPE.EQa5 AN NWEQGL1) ITYPE=1L
RETURN :

DO 33 KZ1oKN

H{NeKo 2)ZHDRY

VINeKe 2) =0,

CONTINUE

IWET{NI=O

XTEN92)=XI(Nsl}

HI(Ns2)=HI(No1}

VIIN2)}=VI(Ne1l)

RETURN

NJP=NJJ

IFENJP.EQ.D) GO TO 4

DO 3 Jz=1leNJP

‘CALL JuMP( Q)

ZORTINUE

COMPUTE V AND H AT GRID POINT
KUpP=2

KNNZKN-1 ]

DO 23 K=2Z+KNN
JF(H{NsK»2)aCTeHDRY/ 2.} GO TO 23
XBZFLOAT(K-1)sDX

TIMZTIME-DT .

CALL STORM(XBTIM}

JIF{Ct2E) e GT.ACCU) GO TO S

IF(ITYPE«NEWIANDJI(N+2+1).GT.0) CO TO 5
IF(KEQaKUPaANDeH(NsKe1)eLT.HDRY*2.} GO TOZ 2
CALL OPHEAD . .
CALL GEOM(2¢ABsHIN oK +1 )9 F3 oTBeDBwl 1 #XB)
TSTK=FRYSTIVINIK +1 1 ¢D2sOPH sC{13sC(5) +C(9) +C(20) +1)
IF{N.EQea1+0ReNaGESNCH) GCTO 51

IF(ITYPE.EQ.2) GO TO 51
IF(ABS(HINsKv1)-H{N-1sKe D }.GTLACCU) GO TO 51
IFLABSIVINSKe1)-V(N-2+Ks 1) )aGTLACCU} GO TO 51
IF(HIN-19K+2) .LTHDRY) GO TO 51
IF(TSTK.GT.0.) GO TO 25

XA=XB-DX

XCIXB+DX

HCZHIN +K+1 91)

VCZVINeK+1 1)

IF(K.LT.KNN) GOTO 34

IF(N.GE-NCH) XC=DIST

IF(N.CE.NCH} GOTO 34

IF(NN.EQ.1) GO TO 34

XCZXI(Nel)

HCTHI{NS 1Y

VC=VI{Nel)

CALL GCEOM{2¢AAsHINK~191)r RAsTAsDA+L sL9XA)

CALL GEOM{2+ACsHCe RC»TCeDCr1+1 ¢XC)

IF{NJJ.EQ.U) GO TO 17

DO & JZ1eNJJ

IF(XStNrJoe1)eGToaXE eANDXJ(N9J?22) eGT.0.) GO TO 7
CONTINUE ’

60 T0 20

DO 8 J2=1eNJJ

IF(XJINs J242) .GTXB) GO TC 9
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114
115
116
117
118
119
- 120
- 121
122
123
124
125
126
127
128
123
130
"131
132
133
134
135
136
137
138
133
iu4gp
141
142
143
144
145
146
147
i48
149
150
151
152
153
154
155
156
157
158
159
150
161
162
163
164

i1

12

13

14
26
is
is

17

ig

24

25

20

21

22

23

CONTINUE . ,
J2TNJJ L '

G070 15 .

IF{Jd2~J) 10e11e1°S .

CALL JL(XB-JZ:V(NQK.Z)vH(NIK12)052302)

GO TO 24

IFEXJINoJe1)-DXWLT-XB} GC TO 10

IF{J.EQs1) GO 7O 17

Jiz=J-1

DO 13 JJ=1.,41

WJ3TJi-JdJd+1 :
IF{XJINIJI3+2)eBT0.0 GO TO 14

CONTINUE

GO 70 17

IF(EJ2-43-8T7T.0) COTO 286
IFLIUXJIEHsS3p1I+DX) L TeXB) GOTO 17

G1T43 .

GG Y0 16

JizJd2-1

€0 TO 12 . . ‘

CALL JRUXBoJLeVINIKo2) oHIN vK02)e823¢2)

60 TO 24

CALL CS{1eoXAsXBoXDeXBoDArDBoDDeVINrK=1el)eVINeKel)eVD)
JF(TSTK.LY.0s) GC TO 18

CALL CS({-1,9XAsXEs XEoXBo DA +DBeDEsVINeK=191) o VINeKo1)oVED
G0 TO 13

CALL CS(-1.9XBoXCeXE oXBeDC oDCoDEoVINIK»1) eVCoVE)
CALL CEQS(VDeDDsVE +DEeVINeKe2) sHENsIKe2) o XDeXEsDToDTeXB)
NG IN oK I=NF

SGINeK I=SF

FCINWKIZFFF

60 TO 23

N1=N-1

Ht{NeKe 2) ZH{N1eKo 2}

VINeKe2) ZVINIeKe2)

NGENeK)ITNGIN1eK?

FGINsKIZTFGIN1eK)

SGINeKI=ZSGIN1+K)

60 7O 23

DO 231 J2=1 oNJJ

IFIXJINeJ292) 6T «XB) GO0 YO 10

CONTINUE
TF{XJININJU1)+DXe LT o XBeCR4XJININJIJr 2) s LTLACCU) GO TO 17
JIZNJJ

GC YO 16

H{NeKe 2} THDRY

VINe Ko 2)=0Q.

KUPZKUP+1

CONTINUE

RETURN

END
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SUBROUTINE INTAL . R ‘

SET UP INITIAL CONDITIONS

COMMON /B1l/ B(40)»C(40) ¢ Z2(20)e TIME+OPHs NN oNy NCH'RSLICURVE

COMMON /7B2/ HU27927¢23eVI2T02702) ¢ HL(27¢1002)¢eHRI27e1Ue23»
SVR(Z2Te1092)eVLE2T02092)eVII2702092)eXJ027910s2)9d I027627¢2) oK NoNJII
COMMON /837 NK(27)tNJ(Z7)rDX0DToDISTuHMINvVMIN'ITVPEvIODOC(27010)1
$S+DS

COMMON 784/ II(2712)vXI(27'2)vHI(Z7vZI'VI(27.2)rGI(Z?wZ)'HI(ZT'Z)v

woNOUNEWNM

SCTL27¢2) o CH(Z2742)eCVIL2742)
COMMON/BGE/AA1¢B31+CCLySNK»IDGySP1eXPGLeSP2
COMMON /B8/ ACCU+ACCUXsACCUY P HDRYCC

COMMON /B9/ TL{10e2)+TRI(10v2)

COMMON /B10/ DXCHsDXKSoODXCHsDDXRS

COMMON /B11/ HRRe#VRR
COMMON /B1l4/ IWET(27)

COMMON/B16/AAAR3B3oCCCoTDsRTOs RMNIRAYV
DJIMENSION VWVIZ)eF(2Z)eVVVIZ2T)»THT(2)

DXCHZDDXCH/B8( 11}
DXRS=DDXRS/B(11}

DXZDXRS '
DXPG1=XPG1/B{(11)
DXPG2=XPG2/8( 11}

DT=0C.

NKKZ(C(22)+DXPG1+DXPG2)/DX+1.93999

DO 4 N=1sNN
NJEN}ZO )
NKIN)=NKK
INETINIZ=O

DO & NT=1e2 .
XTUINsNTI=CLI22)+DXPG1+DXPG2
IT(NsNTI=D
HIEN!NTIZO.
VIIN'NT)=0.W
GIE{NINT) =00
WIINsNT)=DOe
CTINYNTI=ACCU*0,.99
DO 1 K=1+27
HINosKeNT)I=0o
VINsKoeNTI=0O,
JI(N+KeNTI=0O
CONYINUE

DO & Jy=1.10
XJUONsJsNT)I=0W
VJIN+JeNT) =0e
VLINsJNT) =0
VRINesJoNT) =0e
HRUNsJoNT)IZOo
HLUON»JsNTI=0.
CONTINUE
NK{NCH)=NN
NJINCH)ZO

DO 3 NT=1.2
XTU{NCHeNT)Z=Ct 21)
DO 2 K=1+NN
HI(NCHsKeNTIZOW
VINCH+KeNT)IZ0 W
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OO0

32

33

42

JIINCHeKeNTYIZO

CONTINUE

DO 3 J=1:10

XJENCHeJd o NTIZ=0,

VJINCHsJS e NTI =0,

VLINCHoJeNTI =0,

VRINCHoJ o NTI=0,

HRENCH»JoNTI =0,

HLENCH :Jd oNT)Z0,

CONTINUE . '
INITIAL CONDITIONS FOR FLOW ON SIDESLOPE
NS=NCH+1 )
NJENSI =0

NKI{NSI=C133) /DXRS+1092399
NKSZNKINS

DO 33 HNT=L1.2

YT{NSeNT)IZCL33)

DO 32 K=1eNKS

HINSsKeNT) =0,

VINSsKeNTIZ0, o
JI(NSeKeNT)IZ=D,

CONTINUE

DO 33 J=1:10

XJU{NSeJINTIZO.

VJINSeJeNT =0,

VLENSsJeNTIZO

YRINS+JeNTIZO W

HR{NS+sJeNTIZ0 o

HLINSs JeNT)IZ0o

CONTINUE i

CALL RAIN(3¢0.1)

NZ1

IF{B(233.LT.ACCU) GO TO 6
HMIN=B{23)+C(5)/R8(16)

ST=B(23)

CALL PREP .

IF(ITYPEL.EG.3) GO 70 6O
IF(ITYPE.EQsBY GO TO 80

CALL STORMIOXRS+Ds1)
QO=DDXRS*RAV/43200.
STA=Z(CC/8e2Q0#B(24)/132.2¢C(8)))0s{1a/30)
ST1=ST1/5. .

IF{ST.GT.ST1) ST=ST1

GO Y0 7

ST IS DIMENSIONAL STARTING DEPTH
SH IS DIMENSIONLESS STARTING DEPTH
SV IS DIMENSIONLESS STARTING VELOCITY
HMIN=HDRY :
ST=ZU0.1%B(111sC(1S)sRMN/B(12)
TIME=ST/(B{11)*C{19)sRMN/B(19))
NCT=O

I=1

TUT{I)ZTINME

CALL RAIN(3.TMT(IN)
FUIP=TMTATI-STZIEB(11)«C(19)«RMN/B(12))
IF(ABSIFII}I.LTL.ACCU) GOTO 44
IF{I.EQs1) GOTO 43
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114 " NCT=NCT+1

115 IF(NCT.GT.20) GOTO 99

116 ' IF(ABSIF(1)~F{2)1,LT.ACCU) GOTO 44
117 : TMM=(F (112 TMT (20 =F(2)sTMT(1 I/ (FC1)~F (23}
118 - THTELISTMT(2)

119 THT(Z)STMM

120 FL1)=F (2}

121 6070 42

122 43 1=2

123 TMT(2)Z1.1+TIME

124 : G0TO 42

125 44 TIMEZTMT(I)

126 SHZST#C(5)/B(16)

127 ' SY=0. ,

128 IFESHLT.HMIN) HMIN=SH

123 VMINZSY

130 CHH=Z2. sSH

131 IF(IDG.EQ.2) CHHIZSH

132 IF(NN.EQ.1) 60 TO 10

133 CX={CHH-SH)/SP2%B(1617CI5)

134 CTT=CX*SQRT(1-SP22%2)1/B(10)}

135 IF(IDG.EQ.2) CTT=0.

136 9 DISTZXI(N+1)~CTT+B(10)/B(11)

137 NM=NN

128 IFtITYPELEG.2) NM=2

133 IF(ITYPE.E@.5) GOTO S

140 c FOR UNIFORM RAINFALL (ITYPE=1)

141 DO 8 NZ1sNM

142 ‘ HI{Ns11=SH

143 XTiNs11=DIST

1454 CTIN:13I=CTT

145 . IWETINI=1

146 8 CONTINUE

147 , GO TO 10

148 5 CTINNs1}=CTT

149 c COMPUTE H AND V FOR ALL N AND K AT NT=1
150 10 IF(IDC.EQ.1) NKKINKK-1

151 DO 15 K=1sNKK

152 XKZFLOAT (K-1) #DXKS

153 CALL STORM(XKsTIME)

154 NCT=0

155 1=1

156 VVi1)=0.1

157 SSH=SH

153 CALL CEOM{2+AsSSHeReTeDs1e1eXK)
159 11 SVIVV(I} ‘

160 12 CALL FRIC(SVsSSHsFFeReRESRECsIRs»1sXK)
161 FII)=CL2)-Cl4)+FF/B(13)sABS(SV)*SV/R
152 IFLABSIF(TI)LLT.ACCU) GO TO 14

163 IF(I.EQ.1) GO TO 13

164 NCT=NCT+1

165 IF(NCT.GT.50) GO TO 99 ,

166 SVZ(F(1)+VVI(2)~FI2)s VW1 /(FL1)=F(2))
167 - VVI1I=VVI2)

168 VVI(2)=SV

169 F(1)=F(2)

170 60 TO 12
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171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
133
134
135
136
197
188
199
200
201
202
203
204
205
206
207
208

2092

210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227

13

‘14

15

16
17

18

20

21

22

23

26
27

I=2 :

¥Vv(2)=0.0001 : !
60 70 11

VVVIKI=SY

CONTINUE

N=NCH

CALL STORM{1l.+TINME)

NCT=Q

I=1

Vvi{il=0.1

CALL GEOM(2¢AsCHHoRsTeDolelele)
IF(ITYPESEQL2) CALL GEOM(2+A+CHHsR T oD e101+0s)
SVIVV(I)

CALL FRIC{SVsCHHeFFoRIREWREC»IRelv1.) .
FII=CLaI-Cl4)»FF/BL13)+ABS(SVIsSV/R
IFLABSIF(I))e LT<ACCU) GOTO 19
IFt1.EG.1) GOTO 18

NETZNCT+1

IF{NCT.GT.50) GOTO 99
SVI(FI1Y*YVI2)~-FL2)eVWWIL NI /ZF(1)~Fi2))
vviiizvvi2) ' *

vVvizy=sy

F(LIZF(2)

6070 17

I=2

vvi(23=0.0001

GCT0 16

sSYvVzsSy

IF{ITYPE.EG.5) GOTO 70

DO 22 N=1sNM

DO 21 K=1¢NKK

H{NeKes1)=SH

VINeKe1)TVVVIK)

CONTINUE

IFUNN.EQ.1) GO TO 24 .
DXK=XIt(Ns1)-FLOAT(NKK-1)#DXRS
VICNILISVININKKo1I+ (VINONKK 1) ~VININKK-19v1))*DXK/DXRS
CALL GEOM(2¢AsHI(NIL)eRsTeDeleleXI(Nel))
QICNeLIZVIINo1) A

CONTINUE

DO 23 K=1eNM

H{NCHsKe 1) =CHH

VINCHeKe» 13ZSVV

CCNTINUE :

IF(ITYPE.EGe2) GOTO &0

N=NS

CALL STORM{O. ¢+ TIME)

NCT=D

I=1

VV{1li=0.1

SSH=SH

CALL GEOM(2¢A+SSHeRe¢TeDe1s1:0}
syl

CALL FRICUISVsSSHeFFeR'REWREC+IRe190)
FUIIZCiI8)=-Cly)sFF/B(13)2ABS{S,/)eSV/R
IFLABSIF(II).LTL.ACCU) GOTO 29
IF(I.EQ.1) GOTO 23
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228
2293
230
231
232
233
234
235
236
237
238
233
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277

273
280
281
282
283
284

(g o]

28

29

25
24

50

500

501

60

NCT=NCT+1 -

IF(NCT.CGT.50) 6070 99 :
SVYSIFUL)*+VV(2)-F(2)«YV (1) ZUFLL)=F(2))
VVE1I=VVI2) '

VV{2)=SV

FLL)=FL(2)

60710 27

1=2

VV{2)=0.0001

60T0 26

SVYS=SV

DO 25 K=1eNKS

HINSsKs1)=SH

V{NS+K+1)=SVS

CONTINUE

cO0TO0 SO . )
FOR MOVING RAINSTORM THE DIRECTION OF MOVING RAINSTORM COINCIDES
WYTH THAT OF CHANNEL FLOW (ITYPEZ=2)
HRR=ZB( 31 )}*HMIN

VRR=0. :

XINTAL=1.5 .

CNK=SQRT(1.-SP2%*2)

NKKKZNKK

DO 501 N=3+NCH

IFIN.EQ.NCH) NKKK=NN

LO SO0 K=1sNKKK ’

H{N+Ke 1) =HDRY

VINsKe1)=0.

CONTINUE :
IF{N-EQ.NCH} GOTO 501

HI(Ns1)=HORY

VI(Ne1)=0.

CT{Ns1)=HRR*CNK/SP2«3(161/8(10)1/C(5)
XI(N+1)=C(22)+DXPG1+CXPG2-CT(Ns1)¢B(10)/B (11)
CONTINUE

HLINCHe1 91 )=CHH

VLINCHs1¢1)=5VV

HR{NCHs2 ¢r1)=HRR

VRINCH#1+1)=ZVRR

VJINCH 1 ¢2)=SVV

XJ{NCHe1+1)=XINTAL*DXCH

JI(NCHe391)21

NJUNCH)IZ1

IWETINCHIZ1

TLI11)=CTT

TRUL1y1IZHRR*CNK/SP2«R{16)/B(10)/C(5)

c(26)1:=1.

TIME=SQRT(SHs XINTAL*DXCH#B3(16)/(0.5«C{5)*CI{26)sC1131+C(30)+B(11) I
6070 90

FOR TYPE 3 MOVINC RAINSTCRMe THE DIRECTION CF MOVING STORM IS THE
SAME AS THAT OF ROAD SURFACE FLOW , -
TIMEZDXRS/C (20} .

H1=TIME*RMN/B (19)=C({19)}«B(11)«C(5)/B(186)
XINTAL=1.5

VOZH1+DXRS/2. , . .
HH=VO/ {XINTAL sDXRS) '

DO 61 K=1¢3
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285
286
287
238

283"

290
291
2392
283
234
235
23886
237
298
239
300
301
302
303
304
3us
306
3u7
3os
309

311
312
313
314
315
316
317
318
313
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
338
336
337
338
339
340
341

61

63

64

70

72

73

30

XK=ZFLOAY(K=~11 «DXRS .
IF{KoEQa3) XK=XINTAL®DXRS

CALL STORM(XKTIME)

CALL GEOM{2¢AsHHIRsT1De1+19XK)
VINeKel}TC(8) 38.#32.2¢R*R*B (17 )%22/(CC+B(24)+8(12})
HiNesKe1)ZHH

CONTINUE

HRR=B(31)2HMIN

VRR=U.

HL{Ns101)=HH

VLINs191)ZVINe3s1)

CALL GEOM{E¢ARR HRR-HHR.TRR CRRele 1o XJJ)
VJ(Nvlvl)—(A‘VL(Nulcl)—APR‘VRR)/(A-ARR)
XJ{No1slJ=XINTAL®DXRS

NJINI=1

JI{Ns3ell=1

VRENs1e¢1lI=VRR

HR{Ns1s1l)=HRR

DG 64 K=3eNKK

H{N¢Ke1)=HDORY

VINeKel)=(Q.

CONTINUE

G0 TO %0

FOR TYPE 5 MOVING STORM

NZNN

DO 71 K=1leNKK

Hi{NeKo1)ZSH

VENsKo1)ZVVVIK)

CONTINUE

HINCHeNN21}=CHH

VINCHsNN21)=SVY

CTENN22)=CTY .

IFLIDG.EQ.2) CTIT=U.
XI(NN22)ZC(22)+DXPCL+0OXPC2~CTT»B(10) /B(11)
HICNN»1)=SH )
DXKZXI(NNs1)~FLOATINKK-1)#DXRS
VIINNeI)ZSVINNoNKKel)+ (VINNINKKes1)=-VINNeNKK=-1+1))% DXK/DXRS
CALL GEOM(2sAsHI(NGLI)oRoToDeloeleXItNe1))
GI(NNs21)I=VI(NNsl)®A

NMZNN-1

DO 73 NZ1¢NM

DO 72 KZ1sNKK

HI{NeKel)=HDRY

VINeKe1)=0,

CONTINUE

HINCHeNo 1} =HDRY

VINCHsN¢1)=0,

CTY(N»1)=ACCU*0.9¢

IF(IDG.EQ42) CT{Nes1)=0,

CONTINUE

TJWETINNIZL

IWETI(NCH}Z]

60 T0 SO

FOR TYPE & MOVINC STORM

CCONTINUE

DX1z= C(ZZ)*DXPG1+OYP”2—AINT((C(ZZ)*DXPGl*DXPG‘)/DXRS)‘DXRS
IF(DX1aLEoACCUeDRIDCWEQe2) DX1=DXRS
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342
243
344
345
346
347
343
349
350
351
352
353
354
355
356
357
358
259
360
361
362
363
364
365
366
387
368
369
370
371
372
373
374
378
376
3717
378
379
380
381
382
383
384
385
386
387
388
389
330
391
3382
333
394
295
396
297
398

TIME=ZDX1/C130}

NZ=NCH

CALL STORM(DXCHeTIME) .

CC=C{3612C(8)*»+LC(37)

IF(CCeLTo244) CC=24,

H1=-TIME*RMN/B(13)+C(12)+B(11)sC(5)/B{16)

A=H1#B(16)/C(5)*DX1+B(11)/2./78(18)

CNKZSQRT(1.-SP2%%2)

HHZSQRT(2.,+A*B(12)+SP2/CNK) «C(5)/B{16}

T=HH+CNK/SP2/7C(5)3(16)/8(10)

XRS=C(22)1+DXPG14DXPG2~-T«R(1G)/8(11)

NKK=ZXRS/DXRS5+1,395999

P=HM/C(S)*B(1E6)*(1.+1,/SP2)

R=A*B(18)1/P/B (17} ' '

IF{IDGEQ«2) CALL GEOM(1sAsHHeRoTeDeloeleDXCH)
401 VCHZC(8)#8,%22.2*R*R*B{17)+¢2/7(CCsB(24)+B (12}

D0 81 K=1e¢NN

HINCHeKe1)=HH

VINCHeKe11=VCH

IF(IDG.EQ.2) GOTO 402

XI{Kel)=XRS

HI(K»1)ZHDRY

VI(Ke1)=0.

CTIKe1)ZT

CHUKs1)}=HDRY

CVIKel1=0.

GOTO 81

402 XTUKe11=C(22) +DXPG1+DXPG2 .

HI{Ky1)=H(KeNKKe2)
VI(Ky1)ZVIKsNKKel)
CT(Kv1)=0.
81 CONTINUE
DO 83 NZ1eNN
DO 82 K=1sNKK
“H(NsKel) =HDRY
VINeKel)=0.
82 CONTINUE
83 CONTINUE
ITYPE=1
90 CALL ERR(1)})
CALL OPHEAD
WRITE(G+200) MMINeVMINOFHSCC
200 FORMATI(?® HMIN Z%eF3e59" VMIN Z%9F9.5¢ ' OPH =" 9E10e4s* C =*9E11.8
TDIM=TIME#E(11}/B(12)
WRITE(6,201) TIME.TDIM ,
201 FORMAT(1HL1® THE INITIAL CONDITIONS ARE $*'/' TIME =%,F9.3+5Xs
S (DIMENSIONAL TIME =°*¢F3.39" SEC.I )
Io=1
TJF(NN.EQ.1) CO TO S6
IFCITYPELEQ«2) NZNCH
IF{ITYPE.EQ.2) KJ=3
TL(1s2)=TLC101}
TRE1+2)ZTR(1s1)
XJUN2L22)ZXJ{Ne1sl) .
VJINILe2)=VJIN11s1)
VLIN2192)ZVLINI1s1)
VRINs1s2)=VR(Nvs1ls1l)
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389 HRIN+1e2)THRE{Nelel)

400 "HLAN#192)=HLINes1sl)
401 JIINoKJ» 23 ZUT (NeKJs 1) '
402 IFCITYPE.EGe2)} GG.TO 9B
403 . DO 95 INT1eNN ‘
404 . XTCIN23=XI(INeLl)
405 HICING23=HI(INe1)
5086 VICINS2)=VI(INSL)
T wG7 GICING2I=QI(IN»1)
4p8 MICINe2)=WI(INe1l}
409 ITCINS23=TI(INe1)
410 ) CTUINGZ)=CTU(IN»L}
411 CH{INs 2} =CH(INo1)
412 CVUIN2)=CV(INs1)
413 ‘95 CONTINUE
414 96 DO §3 I=3¢3
415 IFII.EQe1} NZ1 B
416 IF(ITYPE.EQ.S «ANDI.EQL1) N=NN
417 IF{LoEBe2) NINCH
418 - IFtI.EQ@43) N=NS
419 CALL PREP :
420 IFINsITYPE.EQ.1) URITE(6v¢202)"
421 202 FORMAT(1OX#*ALSO FOR ALL SECTIONS OF ROAD SURFACE FLOW®)
422 DO 91 K=1sKi
423 HINsKe2Z)SHINsKo1)
4274 VINsK22Z)TVINeKel)
425 91 CONTINUE
426 2(3)=1,
427 IF(N.EQ.NCH} Z(31=0.
4238 IFiN.EQ.NS) Z{3)=0,
4239 ) IFUITYPELEQ.3} 2(3)1=0.
430 CALL OUPT
431 DO 92 KZ1+KN
432 H{NsKe2) =D
433 VINeKe2)Z0.
434 32 CONTINUE
435 IF(NN.EQal) RETURN
436 XJ(Ns1s21=0e
437 VJI(Ns1+2330,
438 -~ VLUNsle2)=0e
439 VRI{Ns1+2)=0,
540 HR{Ns1+2)=0.
41 HL(Ns1¢23=U.
442 : JItNIKJIe2)Y=0 .
443 - IFUCITYPE.EG.2) RETURN
uyy 93 CONTINUE
4y5 TLI1+s2)2TLLL01)
4546 TR{1+2)=TRI151}
4y7 DC 94 INS1eNN
4438 XTCUINe2)=XI(INs1}
. 449 HICINs21=U. ’
450 , VI{INs23=0.
451 GI(IN+23=0.
552 WI{IN?2)=D.
453 IT(ING23=0. .
454 CTUINY2I=CT(INs1)
455 CH(INe2)=0.
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456
457
858
459

460

461

CVv(INy2)=Q.
94 CONTINUE
RETURN
99 SSS=-1.
SS=SA@RTISSS)
END
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Wl DU S G N

OHO0

v

SUBROUTINE JLUXPvJoVLL vHLL ¢S 41D}
COMPUTE V AND H ON REGION °*L® OF THE DISCONTINUITY
ID=1 COMPUTE VLe HL AT DISCONTINUITY WHEN AL IS LESS THAN AR

I0=2 COMPUTE Vs H AT GRID POINT IN LEFT-HAND SIDE OF DISCONTINUI Y

COMMON /B17 BUaQ)+ClUNY+Z{10) s TIME »OPH o NN ¢eNeNCHIRSL ¢ CURVE
COMMON /B2/ HU27+2722) oV 272752 oHL(2701052) e HRI27:1092) 0

SVRI2T9100230VLE2T01092) e VU 270109230 XJE2T7e10921eJT(2Te2T762)0KMeNJJ
COMMON /7B3/7 NKL27) eNJ(27 JeDXoDToDISToyMMIN s VMINoXTYPE o I000CI27010)

$S:DS

16

i3

14
13

COMMON /B8/ ACCU+ACCUXsACCUYsHDRY CC

SS=i. FOR C+

SS==1. FOR C-

DYDZDY

DTE=DT

SS——l.

Y¥IETXJINvJIsl)

K=XJ1/DX+1.9999S

X2=XJ1i

X1=FLOAY(K-1)=DX

XJ2=0.

JJI=Jd

IFtJJ.LE.O) GO TO 15

TFIXJIINeJI=1+23o0T 0 oo ANDe XJINsJI~1¢2) o LTDIST) XJZ‘XJ(N.JJ‘IOI)
IFIXJ2.6T+04) GO YO 15

JIZJJI-1

60 TCO 16

Y2ZVLI{Ne Jel)

CALL GEOM(20A2sHLINtJe1) R 2e¢T200201¢1¢XJ1)
IFIX2-X1.LT«ACCUX} GOTO 4

JFIXJ2.6TX1) GO TO 5

V1IZVIN+sK~1 41}

CALL GECM(2+ALsHINK~131)¢eR19T1eD1s1+10X1)
CALL CS{SS#X1eX2eXCeXPsD1eD2+DCeV1isVv2eVC}
IF(IDJEQGs2) GO TO 10

IFUXColTaXJ2: ANDoXJ{NoJJS-102)eGTo06) GOTO 12
IF(XC.GT4X2) GOTO 6

IF{XCeLToX1) GOTO 4

IF(SS«LT«0.) GO YO 8

CALL CEQS{VCsDCoVEsDEcVLLoHLLoXCeXEo DTD+DTEsXP)
IF(IDEQc1-0RITYPELERs1? RETURN
DX1=XJ{NsJe2)-X1

VLLISVIN oK ~1 225 ¢(VINsK=102 )-VINeK=—242) }2DX1/DX
HLLASH{M oK =1 92) ¢+l HINoK=1 02 )=-H(NvK~2¢2) }sDX1/DX
IF(VLLLTaVLLL) VLL=VLLL

IF(HLL.GTHLL1)Y HLL=HLLL

RETURN

K=K-~1

X1=X1-DX

60 TO 1

X1=XJ2

IF(ABS({X1-X2)aLTe ACCUXI F TURN 5
VIZVR{NsJJ=1v1} :
CALL GEOH(Z:AlvHR(NcJJ-l'llleoTloDI0101'X1)
G0 TO 2

Xc=x2

pC=D2
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10

11

12

ve=v2

60 10 3

SsS=1.

XE=XC

VE=vC

DE=DC o

DTYE=DTD

GO TO 2

IFIXCaBTaXUl) GoTo 11
GOTO0 13

XPC=XP-XC

CALL CROSS(XRtJerVCvDCOX’CnDTDvSSl
XCzXP~XPC
IF(SS.LT.0.} GOTO 8
6070 9 '
XPC=XP-XC

JMZJJ-1

CALL CROSS(XP'JHDI'VCIDC'XPC)DTDOSS)
XC=xP-XpPC
IF(SS.LT.0.) GOTO 8 -
G0 T0 9

END
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SUBROUTINE JL1(XPoeJds VLLeHLL » VRRs HRRe'S) )

USE C+ CHARACTERISTIC EQUATION AND ONE OF THE EQUATIONS OF
DISCONTINUITY TO SOLVE vt AND HL

COMMON /7817 BU40)eClUOIeZ( 20 e TIME+CPH NNoNvNCH'RSLvCURVE

COMMON /B27 HIZT792792)aV(2T027 92} ¢HLI27010+2) eHRI27¢1002)¢
SVR(27¢ 20023 VLIZ27v 10 o2 3o VI 270 109¢2)e XJ(2701092) e JI02792T o2 oK NeNJ
COMMON /7B3/ NK(2731NJ(27)’DXIDTQDISTtHHIN'VHINwITYPEOIOOOC(Z7tlD}v

$S¢DS

COMMON /B7/ NL(Z?-IU)vNR(27110).SL(27010)vSR(27o101 FL(Z7-1039

$FRI27v1019NFJeSFJUeFFJ

1¢

i5

COMMON /7B3/7 ACCUsACCUX+ACCUY sHDRYCC

DCIMENSION F{2)sHH(2)

DYD=DT

CALL GECK{GeARRsHRRoHHRs TRRoDRRs102¢ XP}
XJIZXJENvd vd)

NLiN:J =0

KZXJ1/0X+1.39399

X2=xJ1

X1=FLOATIXK~-1)sDX

XJ2=0.

JJd=J

IFtJJ.LEL1) GOTO 15
IFAXJINOJI=1 923 e6TeBec AND XJIN2JJI=192) o LT DISTI X J2=XJI{NvJJ—1e 1)
IFEXJ2.6T e Uo.AND XJ2eLToLCIST) BGOTO 15

JJITJII1

GO0Y0 16 .

Y22YL{Ns Jo 13

CALL GEOM{20A2sHLINIJe 1) oR2¢T2¢D2¢10 1e XJ{NeJri))
IFiX2- %1 «LT.ACCUX) GOTO 8

IF({XJ2.GToXi3 60 TO @

VIZVINsK-1+el)

CALL GEOM(ZvAlvH(N'K—Ivl)levTioDlvlvlel)

CALL CSU1e9X12X29XDeXP9D1eD2¢DDsV1eV2eVD)
IFI(DD.LY.HDRY) DD=HDRY

IF(XD.GT+X2) GO TO 10

IF(XD.LTX1) GOTO 12

CALL GEOM{S5¢ADoHDsRDTDsDD 511 eXD}

T=TIME-DTD

CALL STORMIXDsT)

CALL FRIC(VOsHDeFOsRDyREDe RECeKD o1 oXD}

CALL OPHEAD

SFDD=ClUdeFDayDeABSIVD)I/Z(2(13) sRD}

S0y S2 ARE ENERGY COEFICIENTS AT POINTS D AND 2
SD-1.

S2z1.

DXD2=X2-XD

JF{ABS{OXD23.LTLACCUX) SFD2=C(8)
IF(ABSEDXD2)«LT4ACCUX) COr0O 20

SFD2= C(8)+(B(18)*(HD—HL(N~J»1))/C(S)48(12)tOZO(SD‘VD*VD-SZ#VZ‘VZ

$/64.4) /1DXD248(11))¢C()

20
31

IF(ABS(SFDD).LT.»QS(‘FDZ)) GCTO &4

SFD=SFD2

NL{NeJ =1

60 Y0 14

SFD=(SFDD+SFD2)/2a
DSQ=SGRT(C(21)s{C(1)-1.)sVDsVD+C(1)sC {20} (DD2C(3)/C(5)+0PH)?}
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107

10

12z

CT7=CtT71«DTD/DT

c1c C(ll)‘DTD'(C(l)‘C(ZU)‘(C(B)—SFO)+C(ZS)/DD*C(19)‘(CT*C(ZS)'C(S)
$/7C19)-CUL) ¢YD+DSQRI+C(3)sC(5I+C(27§ /DDsC(19)¢(CL1) «VD-DSQ)+C(S}*
SC(S)*B(IS)/B(lO)*C(ZB)/(TD‘DD)'(C(S)‘C(ZI*C(ZQ) C{1)syD+DSQY}

=1

NCT g

HHI{1IZHL {NsJ el del,1

HLLZHH(I)

CALL GVOM(GvALI'HLLvHHLoTLLvDLL 1ele XP}
ALR=ALL-ARR

AHLRZALL*HHL-ARR*HHR

HSO=SQRT(C(11*C(20)/ (ALL*ARRI+{AHLR/ALR*{C(S)}/C(5))¢s24+0PH})
FLIN=C(9)/7(C(5)+DDI=( (1, —C(l)ltVD+DSG)*(HLL ~HD) +VRR+ALR#HSQ@-VD-C 1
IF{ABSIFIT))LTLACCL)Y GO TO 7

IF{I.EQG-1) GO TO &
IFLABSIF(1)-F(2)).LT.ACCUcACCU)} GO TO 7
HCTZNCT+1

IF(NCT.GTa20) SSTSORT(-1,)

HLLZ(F {1 ) eHH(2)~ =F{2)+sHH{1) I/ (F(1I-F (2} )
HHU1 J=HH{2)

HH(Z)ZHLL

FL1Iz=F(2)

G0 70 5

1=2

HH(Z)=HL(N+Js1)*1.05

G0 TO S

VLL=VRR+ALR+*HSQ

CALL GEOM(2+ALLoHLLI RLLe TLLeDLL #1v25XP)

CALL FRIC{VLLeHLLeFLLyRLLORELVREC»IRLe2¢XP)
FLINeJITFLL

SLINeJ)I=CUH)SFLLSVLL #»ABSIVLL)/Z{B(13) sRLL)
RETURN

K=K-1

X1=X1-DX

60 70 1

X1=XJ2

IF(ABS({X1~-X2)eLT.ACCUX) RETURN 7

VIZVRINs JU-191)

CALL GEOM(Z2¢rAL+HRINsJJ-141)eR19T1sD1sleleX1)
G0 Y0 2

XD=X2

pD=D2

vDzv2

60 70 3

IF(XJ2«LTaX1l) GOTO 8

XPD=XP-XD

JHZJJI-1

CALL CROSS{XPsJMs1 +VDseDD eXPDeDTD,1)
XD=XP-XPD

6070 3

END

.
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SUBROUTINE JRIXPsJoVRReHRv$¢1ID)
COMPUTE V AND H ON RECION *R°* OF THE DISCONTINUITY
ID=1 COMPUTE VR AND HR AT DISCONTINUITY WHEN AL IS GREATFR THAN R
ID0=2 COMPUTE V AND H AT RID POINT IN RIGHT-HAND SIDE OF DISCONTI.
COMMON /B1/ B{40)+CUHUO) ¢ 7(10)o TIME +OPH ¢ NN sN ¢NCHsRSL 9y CURVF
COMMON /7B2/ H(2T7 27y 2)vV(?7v2702)vHL(Z?llﬂvZ)'HR(27'10v2)v
SVRIZ2T79102)eVLL27¢1092)0VI(2T01002)eXI{2701002)eJI{27:27623eKNeNJY
COMMON /B3/ NKU2T7) oNJ(27 1o DX eDToDIST sHMIN o VMINGITYPE 2 I0¢0C{27610} s
$SeDS
COMMON /B8/ ACCUsACCUX ¢ACCUY +HDRY s CC
. 1IQQ=0
SS=1. FOR C+
SS=—-1, FOR C-
DYD=DT
DTE=DT
SS=is
XJLIzXJIINeJ ol )
K=XJ1/7D¥%+1.99999
X1=xJ1
X2-FLOAT (K)=DX
XJ2=01ISY
JJ=J
16 IFIJJ.GE.NJJ) GO TO 15
IFIXJINeJI41 020 e CT o0 ea ANDe XJINeJJ+102) o LTDIST) XJZ=XJI{NeJJeiel)
IFIXJ2.LT-DIST~ACCUX) GO T0O 1S
NRENNES S
60 TD 16
15 VIZVR{NoJo 1) .
CALL GEOM(2vA1oHR(NeJ213sR19T1¢D1vle 1eXJ1}
IFEX2-X1.LT«ACCUX) GOTO &
1 IF(XJ2.,LTX2) GO TO 5
V2V INeK 1) ’
CALL GECM{Z2eA2+H(N K41 Do F29T2¢D29141 9X2)
2 CALL CSUSSeX1eX2+XCoXPeD1eD29sDCeVisV2eVC)
14 IF(ID.5G,2) GO TO 10
13 IF(XCoBTaXJ2e ANDeXJINIJJ+1 92).6TaDe) GOTO 12
IF{XC.LTeX1) GOTO &
IF(XC.6T.X2) GOTO &
3 IF(SS.CT.0+) GO TO 8
9 CALL CEQS{VOD+DDoVCsDCe VRRe HRRe XD ¢ XCo DTD+DTE »XP}
RETURN
4§ X2=X2+DX
K=K+l
60 70 1
5 X2=XJ2
CIFLABS{X1-X2).LT.ACCUX) RETURN S
V2ZVLINe JS*101)
CALL GEOM{Z2+A2+HLINIJJI*1¢1) ¢R2sT2¢02 vl s19X2)
60 TO0 2
b XC=x1
vC=vl
DC=p1
60 70 3
8 SS=~1.
XD=Xx¢C
vb=ve
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i1

1z

bDhzDC

DYD=DTE

GO0 70 2 .

IF(XCalTeXJl} 6070 12

G070 13

XPC=XP-XC

CALL CROSSUXPodJsloV¥CsDCe PCoDTESSS)

ACZ=XP-XPC

IF(SS.6T.0.) GOTO 8

GOY0 9

XPC=XP-XC

JPTJJ+1

CALL CROSS{XPoJP#2sVCsDCoXPCDTE#SS)
XCoXpP-XPC ’
IF{S5.6T.0.% GOTO 8

60 TO0 % :

END
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SUBROUTINE JRI1(XPeJr WL LoeHLL o VRReHRRy $}

USE €~ CHARACTERISTIC EQUATION AND ONE OF THE EGQUATIONS OF
DISCONTINUITY TO SOLVE ¥P.AND HR

COMMON /817 BI40)+ClU0) o Z{10) s TIME +CPHoNNoeNsNCHeRSL CURVE

COMMON /B2/ HI2T7+27¢2) eVI2T02722) e HLE2T791002)oHRI27910+2) ¢
SVRIZ2Te1092)eVLIZ2701092)eVJI(2791002)eXJI(27¢1092)25T027027923eKNeNJ
COMMON /B3/ NK(Z7)oNJI27 19DXeDToDISTeHMIN e VMIN'ITYPEsL0+0CE2T91 U}
$SeDS

COMMON /BT / NL(Z?:lU)'NR(27-10)'SL127'10)95R!27.10)nFL(Z7-10)s
S$FRI27: 20D e NFJeSFUeFFU

COMMON /B37 ACCU+ACCUX+ACCUY+HDRY e CC

DIMENSION F(Z)rHHlZ)

DYE=DTY :

CALL GEOHQScﬁLLvHLLtHHLlTLL.DLL-IoZvXP) :
XJI=XJ NS sl )
NREN:JIZO
KTHJd1/0X+1,99999
X1zXJ1
X2=FLOAT(K}*DX
XJ2=DIST

JJd=J

IFlJJGENJJ) GOTO 15
IFEXJINoJI+1 912} 0CT o0 ce ANDe XJINJI+1e 2) « LTLDIST) XJZ‘XJ(NrJJ+1v1)
IF(XJ2:6Teloe ANDeXJ2L.TeDIST) GOTO 15

Jdzdde 1

e0T0 16

VIZVRI{Ne Je1)

CALL GEOMI20A1:HR(NeJe1) R1e¢T1¢D1s1s1eXJl)

IF{X2~X1.LT«ACCUX) GOTO 8

IF(XJ2.LTeX2} €O TO S

V2=VI(NsKsl)

CALL GEOM(Z2¢A2sHINsK s1 )9 R2 s T2¢D2 01 91 sX2)

2 CALL CS{-1aoX1eXZe¢eXEsXPsD1sD2eDEsV1eV2eVE)

20
31

IF{DEs LT.HDRY} DE=HORY

IF{XE-LTeX1) GC TO 10

IF(XE.GToX2) GOTO 12

CALL GEOMES+AE:HESRE sTE¢DE 03¢l o XE}

T=TIME-DTE

CALL STORMIXEeT)

CALL FRIC(VEoHE+FE osREvREE+ RECeKE vl oXE)

CALL OPHEAD

SFEEZC{4)eFE2VE*ABS(VE)/Z(2113)4RE)

SEs+S1 ARE THE ENERGY COEFICIENTS OF POINTS E AND 1
SE=1.

S1=i.

DXIE=XE~ X1

IF{ABSIDX1E) oL T.ACCUY) SFLE=C{8)
IF(ABS(DX1E).LT-ACCUX) GCTO 20 )
SFIEZC(B)+ (BlIG)I»{H(NeKo» D ~HE)/CLEI+B(12) 3222 (S1*V1sV1i-SEeVEsVE)
$/64.4) /(DX1E+8(11)1sC(9)
IF(ABS{SFEEI«LTJABS{SF1E)) GO0TO &

SFEZSF1E

NR{N»JIT=1

60 YO 14

SFEZ(SFEE+SF1E)}/ 2.
DSA=SARYT(CII)*(ClLI-1e i VERVESC(1)sC {2032 (DESC(9)/C{5)+0PK]))
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CT=C{7)}*DYE/DT .
CI=C{11)+DTEFI(CU1)2CI20) s(C(B)-SFEI+C(26) /DE=C{13)s(CT7+C(25)3Clb
$/C(3)-CL1)*VE-DSQI=*Cl2)sCI{S)I+C(27) /DE+«C(13)s(C(1) «VE+DSQI+C{) s
$C{5)+B16) /BL10I*C 2 /7 (TE*DEYs (C(3) 2CL2)sC(24)-C(1)sVE-DSQ})
I=1

NCT=0

HHEL)I=HR{NsJoel}

HRRZHH(I)

CALL GEOM{Gs ARReHRRes HHR¢ TRRvDRRe1v 19 XP})
ALR=ALL-ARR

AHLR=ALL*HHL ~ARR+HHR

HSQ=SQRT(C(1)=C(20)/ (ALL*ARR)I*CAHLR/ALR«{C(3)/C(5))e+2+0PH))
FOIF=CI(3)/(CIS)I+DE)s((1, ~C(1))‘VE-DSG)‘(HRR HE) 4V LL+ALR*HSG~-VE-C1
IFLABSIFtI}}LLTSACCUY GO TO 7

IF(I.EQ.1) GO YO €
IF{ABS(F(1)-F(2))LT.ACCU*ACCU) GO TO 7
NCT=NCT+2

IF(NCT.0T«20) SSZSGRT(-1.)
HRR(F{I)*HHI23-F (2} *HH{1D) 3/ (F(1)-F(2))
HHE1)=HH(2)

HH{2)1=HRR

F{1I1=F(2)

G0 YO0 5

I=2

HH(21=HH({1)=1.,01

GO Y0 5

VRR=VLL+ALR*HSQ

CALL GEOM(2+ARR+HRRe+ RRRs RReDRRv 1+ 24 XP)

CALL FRIC{VRRoHRR¢+FRReRRReRERYREC+IRRe2¢XP)
FR{N»JI=FRR
SR{NsJI=C(4)+FRR*YRR*ABS(VRRI/(B{12) *RRR)
RETURN

X2=X2+DX

KoK+1

60 TO0 1

X2=%XJ2

IF{ABSEX1-X2)eLT.ACCUX3Y RETURN T
V2=VL(Ns JJt1 1)}

CALL GEOM{Z20A2¢HLINeJJI+1 911 9R29T2eD291s10X2)
60 TO 2

XeE=x1

DE=D1

VEZV1

60 T0 3

IF{XJ2-6GT-X2) 6O0TO 8

XPEZXP~XE

JPDJid+l

CALL CROSS(XPoeJPv2+VEeDESXPEsDTEw-1)
XEZXP-XPE

6070 3

END
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SUBROUTINE JUMP (J) : ' : » .

COMPUTE XJ AND VJ OF THE DISCONTINUITY

COMMON /B1/ Btao)'C(qn).2(10).TIME-GPH.NN.N.NCH.RSL.CURVE
COMMON /B2/ HIU2792792) V(27927 92) o HLIZ27¢10+2) eHR(27+1092) ¢
SVRIZTe100230 V(279105200 VJI02791092)0 XJ(27010+2) eJT(279027 2} sKNeNJ
COMMON /B3/ NK(27IvNJ(27)'DXvDToDIST'HHIN:VMIN-ITYPE'IO¢OC(Z7-101'
$S¢DS

COMMON /B8/ ACCUsACCUXsACCUY +HDRY s CC

COMMON/BS/ TL(IBs2)sTR{10s2)

DATA NAME/ "JUMP*/

IF(J.EQGe1) J2=0

IF(J2.6T.0) GO TO =0

IF(ABS(HLINsJ+1)-HR{NeJ¢ 1) 1 oLT4ACCU) RETURN

J1zJd

J3=J

K1ZXJ(Ne J1+1)/0X+1.99999

XEZZXJINsJIL1e1)+VI(NsJL 91 JeDT

IF(XE2.LTe0a} 60 TO 7

IF(J1.EQ.NJJ) 60 TO 1 .
XE3ZXJUIN2JI+2e1)+VI{NeJ1+41+1)eDT

IF(XE2.LT4XE3) GO TO 1 -
TWO DISCONTINUITIES CROSS EACH OTHER TO PRODUCE A NEW DISCONTINUI \
J2=J1+1

J3=y2 .

DYT=DT

DTUXJIINeI 201 ) —XSNe JL 91 1) Z{VIINeJ1s 1) =VJ (NsJ291) )
TIME=TIME-DTT+DY

XE2ZXJUN9J29 134 VJI(Ne J2 »1 }aDT : )
KK2=XE2/0X+1.99999 - '

KK1=KK2-1

H1ZH(N+KK1 1)

VISVEINsKK1s1)

XJI=XJ{NsJ1e1)

VJ1=VJI(NsJd1el)

VLIZVL(NesJ1e1)

VRLIZVR{NsJ1e1)

HR1IZHR (NsJ101)

HL1=HL(N»J1e1)

HL2ZHL (NsJ2¢1)

HRZ2ZHR(Ne+J2s1}

VR2ZVR(NeJ2e1}

VLZ2=VL (NeJ2s1)

VJI2TVI(NeJ241)

XJ2=XJ(NsJ291)

VZ=VINsKK231)

HZ=HINYKK2 1)

CALL GEOM(29sAL1+HL 1o RL1¢ TL2eDL1ele1e XJ1)

CALL GEOM{Z9ARZ9HR2rRR2¢ TR2¢CR2e1v 10 XJ2)

IF(AL1.GT.AR2) GO TO 19

CALL JLIXEZ29J1oVLLsHLL$2501)

CALL JRI(XE29¢J2+VLLeHLLs WReHRRe$26}

60 YO 20

CALL JRUXE2+J29VRRIHRR +$26 91 )

CALL JLI(XE2sJleVLLeHLLs VRRsHRR»$25) : .
XKK2ZFLOAT(KK2~1)«DX

XKK1=XKK2-DX
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CALL JLUXKKLoJ1oVINeKK1r 2V s H{INeKKL 23035492}
CALL JRUXKKZ3J2eVINsKK29 2 o HINvKK2:2)¢$49¢2)
CALL GEOM(Z2vALLeHLLeRLLs TLLeDLL?192¢ XE2)
CALL GEOM{2¢ARReHRRsRRRs TRReDRRo 192y XE2)
XJT=(ALL*VLL—-ARR*VRR1/ (ALL —ARR)
DT=DTT-DT

TIMEZTIME+DY

HLEN»J29 1) ZHLL

HRI{N#JZ2¢1)ZHRR

VRINesJ2:1)=VRR

VLINJ2e1)=VLL

VJII{NeJ2e 1) ZXJT

XJUENsJ2¢1)=XE2

XJ{NeJis 1) =0,

XE2=XE2+ XJT«DT

IF{XE2.GT.DIST) CO TO 11

CALL CONJIXEZ2sJ2VLL sHLL :VRRsHRR ¢3 7}
DY=DTT

VINsKK1s1)=V1

Hi{N:KK1e1)ZH1

HiINoeKKZ9131=H2

VINoeKK2e1) V2

XJENsJ1e1)=XJL

YJlNsJlel1¥ VUL

VLENeJ1 1) =VLY

VR{NeJ1e 1) ZVR1

HR{NosJ1s1) =HR]1

HL(NsJ1e1)ZHL1

HL(NesJ2e1)=HL2

HR(N+J291)ZHRZ2

VR{NsJZe 1} ZVYR2Z

VLINeJ2e1) VL2

VJiINed2s1) 2V U2

XJ{Ned2e1)=XJ2

GO YO 4

THERE IS SINGLE DJDISCONTINUITY

J2=g

J3=J

IF{XE2.GT-DISTY GO TO 11

CALL CONJUXEZeJoVLLIHL.Le RResHRR9$7)
TF(VLL.LTaVRRY GO 10 7 )

CALL GEOM(Z2sALLvHLLoRLEL s TLLeDLL 916 2e XE2}
CALL GEOM{2sARR+HRRoRRR+ TRR¢DRR2102v XE2)
XJT=CALL*VLL—-ARR*VRR)/{ALL~ARR}

CALL STORMIXEZ»TIME)

CALL OPHEAD

IF{ALL.GT-ARR} 6070 © :

FRRZFRTISTU(VRR-XJT)eCRRy PHeCU1) 9vC{53¢C(9)aC(20) 1)
FRLZFRTSTUIVLL-XJT}eDLL s CPHeCU13+CI5)eC(2)sC(20)e 11}

IFtFRLeGTc0aa ANDaFRRoL Telse} GOTO 8
GOT0 7

FRRIFRTSTU{XJT-YRR)IsPRRe CPHeCLLI»C(53eC{(T9) e C(20)s1}
FRLZFRISTUIXJT-YLL) e CLLoCPHsCL1Y 2C(51eC{S)sC120)51)

IF{FRLsLTcUoc ANDeFRReGTo0a}GO TO 8
DO 8 JJ=J1d3

XJINeJJe2)¥=0o

CONYINUE
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114
115
116
117

118.

119
120
121
122
123
124
125
126
127
128
123
130
131
132
133
134
135
136
137
138

10
25
26
11
15

49
50

RETURN

DO 10 Juz=U1,3
XJENeJJe 2V =XE2
VJINsJJe 2) =XJT
VLINeJJe2)ZVLL
VR{NsJJ92) VYRR
HR{NsJJe2) HRR
HL{NyJJe2) ZHLL
IFINGEQNCH) TL(JJe2)=TLL
IFINJEGJNCH) TR{JUJ+2)=TRR
OCU{NsJJI=NAME

CONTINUE

RETURN

CALL CONJ(XEZ-JZ:VLLoHLLvVRRgHRR-$7T

GO TO 20
CALL CONJUXE2sJ1sVLL sHLL yWRR+HRR ¢$ 7}
60 TO 20

DO 15 JJ=Jied3
XJiNeJJ»2)=DIST+1,.
CCONTINUE

RETURN
SS=SGRT(-1.)

J2=0

RETURN

END
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SUBROUTINE NEWJ . . .o

T0 SEARCH NEW DISCONTINUITYe IF ANY

COMMON /B1/7 BL40YsClUD) » 7¢10)e TIME+OPHs NNeNoeNCHoRSL2 CURVE
COMMON /B27 H(2T02702) oV 27027923 sHL(27610Ue2)sHRI2T410¢2)y
SVRIZ27+10 21 oVLI27010e2) e VJI2T701002)sXI(2791092)eJT(2792T7+2)eKNsN J
COMMON /B3 /7 NKU{2T7) sNJC(27)eDXoDToeDIST sHMIN o VMIN«ITYPE+IO90Ct27910)
$S¢DS . R

COMMON Z7BU4/ TTI(2T702) eXT{27T 92 s HI(2Te 23 o VI(2T02)9QX(27+2)eWI(27+2}»
$CT(2T7e2Y o CHIZ2T2230CV 270 2)

COMMON/BE/AAL¢BB1+CC1eSNKeIDGs SPLsXPGLeSP29XPG2

COMMON /P87 ACCUsACCUX +ACCUYsHDRYCC

COMMON /B9/ TLL10e2)sTR(ID2)

COMMON /B10/ DXCHeDXRS+DDXCHeDDXRS

DIMENSION F(2)sX(2)

DATA NAMEZ°NENWJ®/

KNNZKN-1 '

DO 30 K=3+KNN

IFEJIINeKe2)eGTo0) GO YO 30
IFIY(NIK9¥2)6TeVINIK-192)-ACCU) GO TO 30

DXA=DX .

DXC=DX

KA=ZK-1

KAARZK-2

KCzK+1

HAZH(N+KA?» 2)

VAZVINsKAs 2)

HB=HIN+K1+2)

VB=VINIKe2) ’
HAAZH{NsKAAs2) ‘

VAAZVINsKAAL2)

HC=H{N+KCe¢2)

VCZVI(NiKCe 2)

TIF{JIUINsKC+2).GT0) GO TO 15

IF(JI{NsKA22).GT<0) 60 YO 18

I=z1

NCT=0

X{11=0.

XX=X (1)

HRR=HB+(HB~-HC)sXX/0XC

VRR=VB+{VB-VC)*XX/DXC

HLLZHAS(HA-HAAY«(DX-XX)/DX A

VELZVA+{ VYA-VAAYs(DX~XX)/DXA

XJ2=FLOATIKAY +DX~XX

CALL STORMIXJ2TIME)

CALL OPHEAD

CALL GEOM{G69ARRe¢HRRs HHRo RReDRRo1lv 2¢ XJ2)

CALL GEOMUGeALLyHLLoHHL ¢ TLLeDLL w19 2s XJ2)
IF{ABS{ARR—-ALL ) LT-ACCU}) GO TO 30

IFLALL®ARR.LTo0a) GOTO 30
F{IITEQDISCALLsVLL yHHL 0 ARRe VRReHHR ¢OPHsCUl1)C(5)5C(3),C(20))
IFLABSU{FETI)).LT-ACCU) GO YO 5

IFtI.EQel) GO TO & .
IFINCToEQoD-ANDLF{13sF£2).6Ts0.) GO TO 30

HECTENCT+ 1

IFENCT.G6T.20) GO TO 3

XXZ{F LY »XL2)-F{2) X {1 NI /(F(L)-FI2 N
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10

11
12

1s

16
17

18

IF{XXeLTeBesORaXXeGTSDXY €O TO 30
Xt11=x12) -

X{2)=XX

FL1I=F(2)

60 T0 3

I=2

X(2)=0X

GO TO0 3

IF(HLLLTeHMINSORsHRR.LT HMINY GO TO 30
XJTZ(ALL*VLL—~ARR*VRR}/Z(ALL~-ARR)
IF(ALL.GT.ARR) GOTO & . ) )
FRLSFRTISTU(VLL=-XJT)+DLLyPHeC{1)sC(5)eC(9)9sL(20)01)
FRRZFRTSTU(VRR-XJT)sDPRRe CPHeCl1) oC(51¢C{9)sC(20)s1)
IFC(FRL.LTe0eoa ORFRRCGT 04 GOTO 30

G0T0 7
FRLUZSFRTISTOUXJT~VIL)oDLL 2 OPHIC(1) oCt5)9C(9)+CL20)91)
FRRZFRTISTU(XJT-VRRIsCRReOPHeCl1)eC(5)eC(9)sC(20)01)
JF(FRLeGT«DeaOR«FRReLT0e) GOTO 30

JICNeKe2)=1
IF{NJJGT-0) GO TO 8
J=1

60 TO 12 N

DO S JZ1sNJJ

IFIXJINs Je2)s6TeXJ2) GO TO 10

CONTINUE

JENJJ+L

60 70O 12

DO 11 JJJ=JeNJJ ) .
JUSNJIJI S JI+Y

XJENoJJ+1e2) =XJIINeJJ 2 )

VJEN2»JJ+1e 21 VI (NeJJI»2)

VLINsJU+1e 21 VL NeJJ92)

VRIN2JJ*1v 2)ZVR(NeJJ92)

HRANsJH1¢ 2} THR(NeJJ22)

HLUIN s JJ+1 923 ZHL (NeJ J92)

OCINsJJ+1)IZ0C (NI JJ)

CONTINUE

NJJ=NJIJ+1

NJINIZNJJ

XJENeJs2)1=XJ2

VJIN»J 92 )XJT

VLI{NsJs2)ZVLL

VRE{N:J 2 )ZVRR

HR(NsJ 92 )=HRR

HLU(NsJe2 }ZHLL

OCI(NsJIZNAME

60 TO 30

XK-FLOAT{K~1)+DX

DO 16 J=1sNJJ

IF(XJ{NeJe2)oaGTaXK) GO YO 17

CONTINUE

HC=HL(Ns Jo 2)

VC=VLI(Ne Jr 2)

DXC=XJINsJ92)-XK

GO0 T0 2

XKAZFLOAT(KA-1)2DX

DC 19 JJ=Z1eNJJ
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114
118
116
117
118
113
120
121
122
123
124
125
126
127
128
123
130
131
132
133
134
135
136
137
138
133
140
141
142
143
144
145
146

19
20

30

31
32

33

40

JINJI=-JJ+1

IF(XJ(NeJe2) oL TaXKA) CO TO 20

CONTINUE : :
HAATHR (N ¢eJe2)

VAASVR (NI s2)

DXA=XKA~XJ(NsJr2)

G0 T0 21

CONTINUE

T0 CALCULATE THE TOP WIDTH OF DISCONTINUITIES OF GUTTRY FLOW
TIF(NNcEQel) RETURN

IF(IDG.NES1) RETURN

IF(NaNEJNCHoOR.NJJ.EG. O} RETURN

DO 40 JU=1eNJJ

K=XJUINCH»J 22} /DXCH+0.99999

XK=FLOAT(K-1)*DXCH

DXKJ=XJUINCHo Je2) XK

IFtJ.EQ.1) GO TO 31

JFIXJINCHr» U~-1¢2).LTeXK-DXH) GO TO 31
DXJLIKZXK=XJ{NCHs J~1¢2)
TLUJe2)=CTUK92)+(CT{Ke 2) -TR{J-1¢21 )« DXKJI/DXJ1K
GO TO 32

TL{J2)= CT(K-2)+(CT(K-2$-CT(K 1:2))*DXKJ/DXCH
DXJKI=XK+DXCH~-XJINCH+J22)

IF{J.EG.NJJ) GO TO 33

IFIXJINCHe J+1¢2).CToXK+2 ,#DXCH) 50 TO 33
DXKL1JIZXJINCHeJ+1e1) -XK~DXCH
TRUJ2I=ZCTIK+L92)+{CTIK+ 19 2)-TL (J+1s 1) 2¢DXJKI/DXK1UL
60 7O 4g
TR(J:Z)‘CT(K+112)+(CT(K+1:2)-CT(K*2¢2))ODXJKIIDXCH
IF(KsGENN=-1} TR(Js2Z)=TR(Js1}

CONTINUE

RETURN

END
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SUBROUTINE OPHEAD [
COMPUTE THE OVERPRES SURE HEAD DUE TO RAINDROP INPACT

COMMON /B1/ B(35)vC(35lvZ(10)¢TIHEvOPHrNNvN'NCHvRSLvCURVE
B68-B(E)+B(8)

0PH=C(7)'B(20)Ot2tC(26)*6(19)3C(25)*COS(BSB’/C!1)
RETURN -

END
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SUBROUTINE O0OUPT

OUTPUT THE RESULTS OF COMPUTATION
COMMON /B1i/ B(4D)+sCOUDY o Z{1D) v TIME sOPHoNNsNeNCHeRSL e CURVE

COMMON /7B2/ H(2T12T7e2) oV {27927 22) e HL(2T7010v2) ¢HRE 2791021}
SVR(27+10¢2)eVLI2701002)9VI(2721002)e XJ(2T7010¢2)eJT(27¢27+2)eKNeN J
COMMON /B3 / NKU273 oNJ(27 }o DX eDToDIST sHMIN+VMINSITYPE2T0,0C{ 279101} ¢
$SeDS

COMMON /ZB4/ TT(27e2) oXTUZ7 92 e HIU2Te 2) o VI(2762)5QI(2742) s NI (2702)
SCT (2702 s CHIUZ2T762)e CVI2Te )

COMMON /BS5/ NGU2Te2T)eSGU27¢27)eFGU2T927)sNFoSFoFF
COMMON/BE/AAL1¢BB1vCC1le SNKe IDGeSP1eXPGLeSP2sXPG2

COMMON /7B3/ ACCUSACCUX+ACCUYosHDRYCC

IF(KN.LT.2}3 RETURN

NS=NCH+1

CALL RAIN(ZBTIME)

B(27)=0.

TF{NeEQ.NCH.ANDB(5) «6TeB.3) CALL INFLT{2.TIME)
TF{NoGTeNCHoANDB(35)¢6Te0e3) CALL INFLT(2+TIME)

WRITE(Ge100) B{32)1:8B127)

100 FORMAT(/® RAINFALL INTENSITY = *sFGa2s " (IN</HR) INFILTRAION RAT ©

= "9E8.30e° (INJ/HRI')

CALL CRISEC

IFINJJGTL0) CALL HRITJ

WRITE(Ss 200}

200 FORMAT( (/74X o X " oBXo Ve 7TX v "H" 6T Xe * Q% 5X 9o FROUDE *s2Xe"REYNOLDS* 92X s
$°CRY RE® s2Xo"F s 3X s FRIC s 4Xs*SLOPE F*e2X e E*e3Xe *VIFPS)*»3Xe
$STHIFT) '+ 4Xe*Q(CFS) )

KNM=KN
TF(NsLToNCH. AND.IDG EQel } KNMZKN-1
DO 10 K=1sKNH
IF{ITYPEcEQoSoANDeNsEQeNCHeANDeKeERa1) GO TO 10
HHZH{(NK 2}
IF{HH.LT-HDRY+«1.01) GO TO 10
1 VVSVINeKs21)
XK=ZFLOAT{K~1)sDX
CALL GEOM{ZoAsHHsR sT sD 2l #2 ¢ XK}
CALL STORM{XKe TIME)}
CALL OPHEAD
B=YVYsA
CALL FRIC(VVeHHoFesReREIRECoKFo 2¢ XK)
VEL=vV=281(12)
HEI=ZHH#*B (16} /C(5)
FREFRTSTUVVeL o OPHe CL1)YoC (S )2 C(B)¢C(20) ¢2)
FLOWZVEL=A+B{18)
TFiK.EQ.1} GO TO 14
HRITE(Gs 2011 XK VVOHHYQDFRIRE!RECFKF'FG(NIK’!SG(N'K)ONG(N'K)'VEL
$sHETFLOW
201 FORMAT(F6e3v2F8oboE3 3 eFle849+2ES8:3¢T342FE%e39v13¢3FS. 3)
60 70 10

14 WRITE(Ge207)XKeVVeHH Q@ 2FRy REVRECoKFo VEL/HET »FLOW

207 FORMATIFGEo302F80leETe3 o Flalio2ESe3e I3 o4 Xo " == ¢7Xe'—=* 5%y *~"¢3FE% 3}

10 CONTINUE

16 IF{NN.EQel) RETURN
IF(Z83)aLT0e5) GO TO 15
WRITE(S,202)

202 FORMAT (/54 «*}/° THE CONDITIONS ON INTER BOUNDARY ARE:/* N*vs

i
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) quy'X'15XO'H'05X"V"7X0'G'U7XO'FR L% 5X» 'FR R'o3Xv‘CNJ HY 92Xy

3

4

$'CNJ V' e3X ' XJDOT * 95Xe *T "}

NNNZ=N

DO 12 N=Z1eNN

IFLCTINe2)LTLACCUIGO TO 12

CALL STORMIXI(N»2)TIME}

CALL OPHEAD

CALL GEOMI2eAsHIINI2)sReTeDrle2oXIINS2)}

CALL GEOM(2+A+CHINI2)+RRRe+ TRReDRR# 19 2¢XI(Ne2)}
FR-SFRTST(VIIN22)eDs0PH2C{L)}oC{5)eC(3)sC(20)+2)
IF(II{Ns2)sEQ.D) 50 TO 11

TIF(CH{N9s2) ~HI(N#s2)}9+11s 3

FRLOFRTISTO(WI(NG2Y~VTI(NeZ) }oDsOPHeC(1)sCU5)+C(3)»C{20)+2)
FRREFRTSTU{HI(Ne2} ~CVINv 21 ) e DRReOPHe C{1)vC(5)eC(3)sC{20)+2)
GOYO 4 R
FRLZFRYIST(IVI(Ne?) ~HTI(Ne 22 eDeOPHeC(1)+CU5)eC(3)sCL{20)+2)
FRR=FRTIST((CVI(Ne2) —WI(Ne ) ) eDRReOPHs Cl1)eC{S)eC(S)»C(20)+2)
WRITE(Se203INs XIING2 s HI(Ns2) s VI{Ne2)eQGI(Ns2)+FRL ¢FRRy

SCHINI2IeCVINSI2) e WItN92)9CT(Ne2)

203

11
205
12

15

204

FORMAT{(I4e¢3F7. QcZES.VoE9-392F7 Ye2F8 ek}

€0 Y0 12
WRITE(Ge205INeXTINe2 e HI N 92) e VI(Ns21eQI{Ne2) e FReCTIN2)
FORMAT(TI4¢3F7et9o2EGa39 56X e — o 5Xe " — "1 5Xe*—¥96Xe *— "+F1lO.4)
CONTINUE

N=NNN

RETURN

IF{NJNE.NCH) RETURN

IFIVINCHNN¢2)oLT.ACCU) RETURN

QINLET=Q-C(28)

GDINZFLO¥W-B(28)

WRITE(6+204) GINLETsGDIN

FORMAT(/* FLOW THROUGH INLET IS @ =% ES.3»* (DIMENSIONAL DISCH R

$SGE Q@ ='+E9e3¢" CFS)T)
RETURN
END
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13

21
22

23
24

25

SUBROUTINE PACKJ :

ELIMINATE ANY DISCONTINUITY WHICH DISAPPEARS

COMMON /B17/ Bl40)sC(LUOYe ZUID) o TIME »OPHe NN oNoeNCHeRSL e CURVF
COMMON /B2/ HU2T+2742) sV 2Te2792) e HLI2 71022} sHR{2791092 )
SVRI27e1002)eVLI27¢10¢2) e VJ(2701092)e XJI27610:2)eJTI12T02T722) o KNeNJJ
COMMON /B3~/ NKC27) oNJ(27 Yo DX oD T o DTIST HMIN o VMINS ITYPE s I0s0C{ 27010}
$SeDS

COMMON /B7/ NL(27lel'NR(77:10)vSL(2791D)cSR(27vIDlvFL(27n10)v
$SFR{27v10)sNFJ»SFUWFFU

COMMON /8B8/ ACCUsACCUXsACCUY +HDRY»CC

IF(NJJLT 1) RETURN

IF(NJJ.EQ.1) GO TO 24

NJP=NJJ-1

DO 23 JZ1eNJP

IFIXJINsJe2} o GTDIST) GOTO 19

IFIXJUNIJe2) e GTuDasANDS ABS(XJ'N'J+1n2)-XJ(N.J.Z)).GT.ACCU)GO T0 2
L0 21 JJU=JWNJP

XJENeJJs2) SXJ(Ne JU+1 92}

VJIN»JSJr2) VU (Ns JU+1 2 )

VLINsJJI92) VL N9y JJI+192)

VRIN+JJe2) VRN JU+1¢2)

HRIN¢JJ» 2)THR (N2  JJ+1 92}

HLINsJJe2ITHL AN JU+1 +2)

OCINY»JJUIZOCINJU+1)

NLINsJUIZNLINsJJ+1}

NR(N?2JJIZNR(NeJI+1)

FRUNsJJII=ZFR(NsJJ+1)

FLINsJJIZFLINsJJ+1])

SLINsJJYTSLUINsJI+1 )

SRIN+JJ)ZSR{NeJJI+1)

CONTINUE

NJJZNJIP

IF(J.LTNJP) GO YO0 20

CONTINUE

NJUIN)IZNJJ

IFEXJININUUP2) e GToaDISTL0RSXJEININIJU92)LTLACCUX) NJINISNJ(N)-1
NJJ=NJ(N)

IF(NJIN) oEQaD) RETURN

DO 25 J=1+NJJ

K=XJ{NsJ+2)/DX+1.99359

JI(NsKs2221

CONTINUE

RETURN

END
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SUBROUTINE PARA :

COMPUTE VARIABLE C®°S VALUCS ,

COMMON /B1/ B(8D}eC{U0)eZ{103s TIMEsOPHs NN oNeNCHeRSL ¢ CURVE

COMMON/BE/AA1sBRBIsCCLs SNKyIDCeSPLoXPCLeSP2oXPG2

COMMON/B13/STR

COMMON/BIG/AAA:BB3+CCCoTDsRTOeRMNORAY

DYMENSION A1l 80C)eA2¢E0) .

DATA A1/°® BETA®e¢® "9¢° EPSIL s "ON"e® BETA e L "e® THETA's® 0%e2¢* %
1° PHI Z°%e® "9 DELTA®e® "¢° THETA®eY Z%s2%% *¢* T 09" "4* L 0%
2° 9" V 0%0% 9% F Q%¢® "¢ RE O'c0° "¢® H 0%® *»* D 0%* "+* R O°
3¢ *2® A O0%9* "5Y RAIN'v°0%9° FR 0% ® ®o® L CH®e* "9* L RSy " %
4% K" F9? NU%e® "9° DAMDA®s® ®¢® RAIN®e® %9' I%s° *,7 Q IN*9" "
§° 0 L%e% %o W¥:® "5 HR/HM s®"IN'e* R (FO"¢'R MS)®e® FT"s* °¢* PE
GRCET"NT ¢ ® FT%9® 998%® %¢° IS IN%e? */ .

DATA A2/° BETA®e® *9° TAN P'¢?ST %¢® BETA"e*L"e" SIN B*e'4",

1% COS B%9"4%9° SIN B 9 *G6+458%:2° C R®e ' *9°® SIN B'y"8%y* COS B®e*8°¢,
2247 *5® LO/DO®s®/C5% ol Us® *o® RO/G3%°200/V0%s® 1/FRO®1 %4527,

3% L CH s ®e%9® L RSTe"e"¢® K #%9% *o? U 747 “¢7 DAMDA®e " °,
GIRAINT % 2% 6% T 295% %%  Q TN®998%0% Q@ L 2%9® o' H $%¢5+°% *,% IS ¢
5%¢% %99 THETA®s® S 2% 7 KS =% ®910s° */ '

CGOLAIBeXIZSOART{U,,¢AsAsXs X4y o #AB2X+B2B41, )

IFLABSCAAL) 4L T.0.1E~-20C) GOTO 12

RSLZ(2.5sAA1sE(22)4B211/(4.%ARLIsGG(AALsBB1eBI22)) ¢1./{84.3SARTITAALS
$AALYISALOG(S8, *AAL#AALsR {221 +U»AAL+BB124, *SCRTTAALIsAAL)*CGLAALsBB1
$¢B(22) 1) -BB1/(4.2AALI*GGIAALYBEBLo0o) ~1o/1 4a3SCRTLAAL®AAL) ) #ALOG G,
$xAAL12BEL1+4,*SORT(AAL2AALI*CG(AALLBETI ¢0.))

GOTG 13

RSL=SQRT(8B1%%2+1.)2B(22)

Ct11=B(1})

C{21=SIN(ATAN(SINIBIU})/SP2))

C(3)=B(3}

Cl7)1=1.53B(2E)1/(60U.*60.+B{T))}+0.01+8(11)/BL12)

Cli0)=B(39)/BL11)

C(111=B(113/B8(161Y/C(5)Y

C{12)z=B(S)Y/B8017)

Cl19M=R(19)3/7043200.48(12))

C(20)=1./8t201%%2

C{z21)=B(211/B1(11)

C{221=B(22)/B (11}

C(23)=B(23)1/B(17)

C(25)1=B{25)/B (12}

C{261=0(261/E(19)

C(271=B(27)/B8(13)

C{231=B(28)/(E{12)*B(18)])

Ct29)1=B(23)+«C(351/{b(12)«E(16))

C(30)=BL2INI/B(12)

C{33)=B(333}/8(11)

C{34I=ATANIZ(34})

C{35)=B(3SI/B (17}

C{36)=B(36)

C{37)=B(371}

Cly0)I=B(40)2C(5)1/8L1¢E) .

THE FOLLOWING TWO STATEMENTS ARE SET TO CHANGE TD BY STR (DIMENSI-

CNLESS TIME FOR RAIN TO STOP) ..

SYR=5.

IF{TD+60.%B(123/B(11).8T.STR) TD=STR»B{(111/8(12)/60.

232



200 FORMAT(/* TABLE OF INPUT DATA AND DIMENSIONLESS PARAMETERS"

201

202
10

203

WRITE(E,200)

$//75X9 I r11Xe*B(I} 4 20Xe"C(I)"/)
DO 10 I=1.40

TITI=2+1

ITI=YIII~1

HRITE(6+201) 1 B(I)|A1(III)'Al(IIII)vC(I)’AZ(III)wAZ(IIII)
FORMAT(I6+2X92(F11e4+1Xy2A61)
IF(I/5#5.E5Q.T) URITE(G6¢202)
FORMAT (1X)

CONTINUE

HRITE(G+203) RSL

FORMAT(/* RSL = "vF6.2¢% FTY)
RETURN ’

END
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. 200 FORMAT(/18A6/° FOR CHANNEL FLOW®)

‘SUBROUTINE PREP . !

SET UP THE VALUES OF THOSE PARAMETERS WHICH CHANGE WITH SECTION N

COMMON #B1/ B{UOJC(403¥sZ(103e TIME +OPHoNNoeNeNCHsRSL e CURVE

COMMON /BZ/ MIZT7427¢2)aV¥i2T02792) sHLIZ27910s2)1HR(2701002)
SVR(Z2To10 22 VL I2702092 3o VJ 2701022 )e XJd(2Te10s2)0dT 2702792} eKNeNJJ

COMMON /B3/7 NK{271 oNJ(27 beDXsDToDIST eHHINeVMINSITYPE +X040C(27¢10 0
£S+DS .

COMMON /B4 / TI(2702) oXT(Z792VeHII2762) o VI (27921002702 s WIlZT 4200
SCY 27023 oCHIZ2T 0234 CV 2T 1) '

COMMON/BS/AAL1sBB1osCC1oSNKeIDGaSP1e XPE1 oSP2¢XPG2

COMMON /B1D/ DXCHoOXRS ¢DDX CHoDDXRS

DIMENSION STAR{LE)

DATA STARs18%* = &« %%/

DATA Z821/0./

DATA I0/0/ .

Ct71T1.5%8(26)/{060.¢E0.2B{7)1eDT#B{11)/8(12)

IF(Z{21.6T-0.) QIN=B(28}

Zi2Y=0.

NJJUZNJSIN)

IF{N-NCH)Z¢352

FOR CHANNEL FLOYW
3 DX=DXCH

B{28)=0QIN

Ct28)=B(281/(BI{1Z)+B(18})

DIST=C{21} .

KN=NN

IF(I0.EQ.1) WRITE(Gs 2B O} STAR

RETURN
FOR OVERLAND FLOW
2 TFINGTNCH) XI{Ne2)=CU{33)
DIST=XI{(Ns2)
DXPGI1=XPG1/B{11}
DXPG2=XP62/8{11})
IF{ITYPE.EQe3) DIST=C{22)+DXPG1+DXPG2
JFINNGEQ.1)} DIST=CI22)+DXPG1+DXPG2
DX=DXRS
KN=DIST/OX+1,939299
B{28)=0.
C(283=0.
IF{I0.EQe1) WRITE(Gs 201} STAReN
201 FORMAT(18A6/° FOR.OVERLAND FLOWSECTION®I3}
IF(I0.EQa0o0RZ(1) L Ta0. (001} RETURN
DZ1=7(1)*8(11)/8(12)
WRITE{ 622021211} D271
202 FORMATI(/S5X s76(%a*) /5% Yo AT TIME ="+ F323¢5Xe "{IDIMENSTONAL TIME =
$F 9439 SECa)} RAINFALL ST(OPS <*/5Xe76(°e"})
2{11=-1.
RETURN
END
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SUBROUTINE RAIN(IRsTMOL)

COMPUTE RAINFALL INTENSITY

COMMON /B1/ B(40)+Clu0)¢Z(10) s TIME +CPH s NN oNsNCHsRSL ¢ CURYE

COMMON/B16/AAA+BBBsCCCoeTDeRTO¢RMN o RAV

INDEX IR-1y CCMPUTE AVERAGE RAINFALL INTENSITYs» RAVe ING/HR

2y COMPUTE INSTANT RAINFALL INTENSITYs RINT» INo/HR
3y COMPUTE TEMPORAL MEAN RAINFALL INTENSITYs RMN, INe/HR

USE THE RATE-DURATION-FREQUENCY FORMULA.

RAV-AAA/(TD+BBB)*+CCC

RTO=SKEWNESS OF STORM PATTERN

TO=TIME DURATIONs MINUTES

AAAs BBBe CCC=PARAMETERS

CCC MUST BE LESS THAM UNITY IN CASE THAT BBB8 IS LESS THAN ZERO

GO TO(1e2¢3}+1R

READ(S5+100) AAABBBe¢CCCsTD+RTO

FORMATI(B8F10.0)

WRITE(G¢200) AAALBBB,+CCCTD¢RTO

FORMAT(/* RAINFALL PARAMETERS ARE A = '4FB.2¢" B = %¢F8.2¢* C = *
$+F8.2¢" TIME DURATION {TD) T *+F842¢* (MINUTES) RATIO (R} = "+F8.3
$)

IF(BBB.LE.0.) GOTO 11

RAVZAAA/(TD+BBB)»+CCC

B(Z6)=RAV

RETURN

BEB=-BEB

IF{CCCeBEela) SSSTSARTI-1.1}

RAV=AAA/(TD-BBB)**CCC

IF(TD.LE2.%BBB/{1—CCC) ) RAVZAAA/BBB*2CCCs((1.—CCCI/{1.+CCC))Is=CC
$C

B(26)=RAV

RETURN

TTT=TMDL*B(11)/B(12)/60.

IF(TYT.LE.TD) GOTO 20

RINT=O0.

B{32)=RINT

RETURN

IF(BBB.LE.O0.) 60T0O 21

IF({RTOeLE«Oa) RINTZAAA* ({1 .-CCCI+TTT+BBB)/(TTT «BBBI*%(1.+CCC)

IF(RTOGE «le) RINT=AAA®({1.—-CCCIs(TD-TTT)+BBB)/ ((TO-TTT)+B5B)*s (1.
$4CCC)

IF(RTOOT «Ueo ANDaRTO L Tele e ANDaTTT.LERTO*TD) RINTZAAA#({1,~CCC)=
S(TD-TTT/RT0)+BBB)/L{TD-TTT/RTO)+BBE) s (1 +CCC}

IF(RTO0.0T «Uee ANDaRTO L Tale s ANDaTTTeGT«RTO TDaANDW TTT.LE.TD) RINT=
SAAAS{{1.-CCCI«{TTT-RTO*TD) /{1.~RTO)+BBB)/ ({TIT-RTO+TD)/ (1.~RTO}+
$BBB) *+(1.+4CCC)

B(32)=RINT

RETURN

EBB=-EBB

TF(CCCeGEoals) SSS=SQRT(-1.)

IF(RTO0.LE«U.) GOTO 22

IF(RT0.GE.1.) GOTO 23

GOTO 24

IF(TTT.LE.2.#B8BB/(1.-CCC)) RINT= AAA/BBBs#CCCx{(1e~CCCI/(14+CCCII=%
$ccC

IFITTTe6Te2e%883/(1e-CCCIANDSTTTLLELTD) RINTZAAA#{(1.~CCCIsTTT-
$BBB)/(TTT-BBB)*+(1.+CCC)
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B{32)-RINT
RETURN

23 TFETTV.LE{TD~2.%BBB/{1.-CCC3I) RINTTAAA® {(1.~CCCI+(TD-TTTI-BBB)/(

${TD~-TTT)-BBBY22{1.+CCC}
IF YT ToGTolTD-20%88B/{1--CCCIIoANDTTY.LETDY RINT=AAA/BBB+sCCCH
${{1.-CCCI/{1L+CCCH}=2CCC
B{32I=RINT
RETURN
24 TF(TTTaLEa(RTO02TD-2.¢BB8BRTO/{1—-CCC M) RINT’AAA'((l.—CCC)*(TD 177
$/RT01-8B8BY/{UTD-TTT/RTO)-BBB)#3 {1,+CCC)
IF(YTToCTe{RTO2TD~232BB#RT0/{1o~CCCYJ o ANDeTTToLE « (RTO»TD+2.*BBB=(
$1.-RT0¥I/{1.~CCCM 1) RINT-AAA/EBBssCCCa{{1.~CCCI/ {2 +CCCII=xxCCC
IFETTT 0T o f{RYO2TD+22¢BBB¥{1o-RT0I/(1e-CCCH) oANDTTTLEL.TD) RINT=
SAAAL((1.~CCCI#4 TTT-RTO®TD) /(1. ~RTOI~BBBI/ ({TTT~ RTO’TD)/(lo—RTOl—
$BBBI 22 {1,¢CCC}
B{321=RINT
RETURN
3 TYT=THOL=B{(11}1/B112}/60, .
IFLTTV.LT.TD) GOTO 30
RMN-AAA«TD/4TD*BBBIxsCCC/ATTT,
RETURN
30 IF{TTT.LE.O.1E-6% GOTO 3%
IF{BBB.LE.O.) GOTO 31
IFC(RTO.LE-U-} RMNTAAAZ{TTYT+BBBIx2CCC
IF{RTOCE L IRMN=C(AAAsTD/{TD+BBB)s2CCC-AR A2 {TD-TTTHI/{TD~ TTT*BBB)‘*
sccey/sTay
IF{RTO0aGT 00 ANDoRTO L Te 1o o ANDo TTT.LE.RTO sTD) RMNZ(AAA*RT O»TOD/(TD+
$BBBY#s«CCC—-AAA*RTO#{TO-TTT/RTCI/(TD-TTT/RTO+BBB) 22 CCCH/TTY
IF(RTOeGT aBoc ANDeRTO L To2a o ANDoTTTaCToRTO#TDeANDa TTToLEoTD) RHUNZ(
$SAAA*RYO*TD/(TD+BEB )« CCCH+AAA«(TTT~-RTO=TD) /L (TTT~ RTO*TD)/(le—RTO)+
$BBB)=:CCCHI/TTY
RETURN
31 888=-8BB
IF(CCCo6Fals) SSSESERTI-101)
IF(RTO.LE.O.3 GOTO 32
IF{RTO.GE.10} GOTO 33
GOTO 34
32 IFITTT.LE.2.2BBB/{1.-CCC)) RMNTAAA/BBB##CCCx{(14-CCCI/{1.+#CCCIIe5C
$CC
IF{TTTe0Te2.%BBB/{2o~CCCYANDTTV<LE-TDY RMN-AAA/{TTY-BBB)#%CCC
RETURN
33 IFATTToLES(TD-2.%BBB/{1.-CCC)I) ) RMNZ(AAA*TD/(TD~-BBB)»sCCC-AAA%{TD~
$TYNV/ZCTID-TTIT-B8BB=sCCCHI/TTT
TF(TTTe0TelTD=2,%868/(1eLCCIIcAND.TTTLE«TD} RMNSC(AAASTD/( TD~ BBB)
$%2CCC-AAA/BBB*2CCC*{{1.~CCCH/(1o2CCC YY) 3&«CCC(TD-TYTII/TYY
RETURN
3 IF(TTTaLEL(RTO#TD-2.#08B8+RT0/{1.~CCCI) ) RM-{AAA* RTOsTD/{TD-BBBY 2%
$CCC-AAALRTO«(TD-TTT/RTO)/(TD-TTYT/RTO-EBB) #«+CCCI/TTT
IF(YTTeCTo(RTO*TD-2#8BB#RTO/{1e~CCCI) e ANDaTTTLE «({RTOsTD+2 o+ BBB2 {
$1.-RTOM {1.-CCC3 1) RMNZ(AAA=RTO+xTO/{TD-BBB)«sCCC+ AAA/BBB*+CCC*{ (1.
$-CCCI/CL+CCCHI#sCCCs(TTT-RTOSTOIY /TTY
IF(TTTeOT«{RTOsTD+2.3BBB#(1e-RTOI/(1e~CCCIVaANDTTTLE,TD) RMN=
SLAAA+RTO*TD/(TD-8BB ) +sCCC+AAAS(TTT-RTO*+TDI/LU{TTT-RTO*TD)I/ (1.-RTO}~
$BBBI »«CCCHI/TTT
RETURN
35 RMN=QO.
RETURN
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SUBROUTINE REF

COMPUTE THE REFERENCE PARAMETERS

COMMON /B1/ BUU0)CU81)s20101), TIME.OPH-kNvNoNCH.RSLcCURVF
COMMON/BE/7AA18BB1oCC1e SNKeIDCoSPLeXPGL#SP2+XPG2

COMMON /BB/ ACCUSACCUX+ACCUY sHDRYs CC

DIMENSION F{2)1:Y(2):PRI2)

REFERENCE FLOW IS ASSUMED AS UNIFORM FLOW PER UNIT WIDTH AT THE
EQUILIBRIUM STATE AT THE INLET

B{11)=Bt(21)

N=1

ACCU=O.1E-6

HDRYZD.1E-4

ACCUX=ACCU/B(11)

B(Q)“ASIN(B(4))

B{&)Y=B(4)

B(32)=8{286)

Clu4)=SIN(B(4)}

ces5y=cesisty})

C{B)=SIN(Bi{c}I+B(O})

C(8)Y=SIN(BIB))

c{s8)z=cosietLsry

SC-ABS(CUlL))

JF(Ct4)eGTe0e) GOTO 22

CC=0.

60710 22

CC=B(36)=Cl4}+=2B(37)

JF(CCaLTa24.) CC24, .
AREA=B(21) #(B (22 )1+ XPC1+X F: 2+8(33)+B{ ) )+C (5)

QO=B(26) *AREA/ (12 +ECe*6 (s }+B(28)
B{19)=12.#60.560./AREAXQQ

IF(B(23)4LTLACCU) GO TO 4

WHEN ROUGHNESS SIZE K IS LARGER THAN ACCUes ASSUME TURBULENT FLOW
ON ROUGH SURFACE

I=1

NCT=D

Y(1)=0.1

HOzY(I)

CALL GEOM{2+A0sHOs RO T O+ D0 92 ¢1+¢1)
F1Z2.+ALOC10(2.2F0/B(23))+1.74

F(I) =257 .63A0+A0*R0=xSOsF 1sF1-Q0%00
JFIABSIF(IN)LLTACCUY G0 TO 3

IF(I.EQe1l) GO TO 2

NCT=NCT+1

IFINCT«GT«20) SS=SAGRT{ -1 <}
JF(ABSH(F(1)-F(2)).LT.ACCU«ACCU) GO TO 3
HOZ(F{1)»Y(2)-F(2)sY(1))/{LF(1)-F(2))

Y(1)=Y (2)

Y{2)=HO

FCLYZF{(2)

GO TO 1

1=2

Y(2)=0.5

G0 10 1 .
B(12)=Q0/A0 '
B(14)=8B{12)+R0/3(24)

CALCULATE THE CRITICAL RENOLDS NUMBER BETWEEN TURBULENT FLOW ON
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SMOOTH SURFACE AND LAMINAR FLOW .

REC=500. ’

NCT=0

Fiz REC~CCt(ALOGlD(REC)+ALOG10(CC)*C.QUH)‘*Z
F2=14~24#SQGRTI(CCI/LALOG( I «)*SQRT(REC))

RECCZREC-F1/F2

IF(ABS(RECC~REC) L TLACCU) GO TO 6

NCT=NCT+1

IF{(NCT«GTa20) SSSSQRT(~1.)

REC=RECC

GO TO S

REL.SZRECC

IF(B{23).LT.ACCU) GO 10 i}

CALCULATE THE CRITICAL REINOLDS NUMBER BET WEEN TURBULENT FLOW ON
ROUGH SURFACE AND LAMINAR FLOW
F1=2.#*AL0OG10(2.+R0O/B(23)1+1.74

RELRZCC+F1sF1

IF(RELS.GT.RELR) GO TO 7 .
RESR=THE CRITICAL REYNOLDS NO. BETWEEN TURBULENTY FLOW ON SMOOTH
SURFACE AND THAT ON POUGH SURFACE
RESR=9.312*R0*F1/5(22)

IF(RESR-B(14)) 8+8+9

IF(RELR.GT«B{14)) GO TO 15

B(13)=14/F1%¢%2

G0 T0 20

ASSUME TURBULENT FLOW ON SMOOTH SURFACE
I=1 .

NCT=0
RR{ILIZ(CC*Q0*+Q0/ (257 .6*SO0«RELS}I)*s(1e/3)
RO=RR{I)

CALL GEOM{3sA0+HCrROSTO9L0929191)
F1=SART(257.6*R0*S0)*A0/ Q0
FOI)=2.+AL.0G1I0(QO0«RO/(AD ¥ (24))sF1)+0.4048-14/F1
JFLABS(F(I)).LT.ACCU) GO TO 12

IF{I.EGa1) GO TO 11

NCT=NCT+1

IFINCT.CGTe20) SSSSQRT(-1.)

ROZ(F( 1) *RRIZ2I-FIZ)*RRUI N ZIF(1)~F 2 })
RR(1)=RR(2)

RR(21=R0O

F{1)ZF(2)

GO YO 10

1=2

RRI2)=R0O*1.2

GO TO 10

B(12)1=Q0/A0

BO14 J=B{12)+R0O/B(24)

IFIB(14) L TLRELS) GO TO 15

B(13)=F1=+F1

GO 10 20

COMPUTE F AND R FOR LAMINAR FLOWs F=C/RE AND G=82(G2S*RxR%A/(C*NU)
RR{1)=(CC/8+4#00+B(24 )/ (32.2%S0))1*%(1 e/ 3)

I=1

NCT=D

RO=RR{I)

CALL GEOM(3+A0sHC RO »TOe I 9291 191)
FUI)=32.2¢R0*+25xS0*A0/(CC/84.+B(24) }-Q0
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118
115
116
117
iis
1183
120
121
122
123
124

126
127
128
129
130
131
132
133
134

136
137
138

17

i8

20

IF(ABSIF{I¥ILT-ACCU) GO TO 18 '
IF{I.EQ.1} GO YO 17

NCT=NCT+1 :

IF{NCT.GT+20) SS=SGRY{~1.)
ROZI{F(1}*RR(2)~F(2 J+RRIL VI Z{F{1)-F(2})
RR{LI=RR(21}

RR{2}=RO

F{1y=F (2}

60 70 16

I=2

RRIEZ2)=RO*1.2

60 10 186

B{123}=Q07A0

BU14}=B(12)%R0O/B{24)

B{133=CC/B(1y}

TF{RELS.LT.B¢i4} ] SS=SGRT(~1.)
B{153I=HO ’

B{10)=70

B{161=D0

B{17)=RO

B{181}=AQ
BU2D)=B{12)/SORT32,2¢BL16)2C(5)/B{1))
ACCUY=ACCU=*CIS51/B(16}

RETURN

END -
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SUBROUTINE SLOPE ‘ .

COMPUTE RUNOFF DISCHARGE FROM SIDESLOPE

COMMON /B1/ BU40)+C(80) s 20103 TIME»OPHs NNsNeNCHsRSL s CURVE

COMMON /827 H(2792Te2) sVI2Te2792YeHLI2T910s2)¢eHR{2T¢1092} ¢
SVR(27+10+2 e VLI27e 109230 VU(2701002)9 XJU279102)9JT(2722702)KNeNJJ
COMMON /7B3/ NK(27)sNJ(2T 1eDXeDToeDISToHMIN e VHIMe ITYPEsTO0CC(27910)»
$SeDS

COMMON /B4 / TTIU27¢2) oXT(2792)eHI(2Te2) o VI(2792)9QI(27+42) W (2792
SCT(27+2) s CHIZ2T52)9sCVI(2T+ 2)

IFC=INDEX FOR COMPUTATION OF NEWLY CCCURRING SHOCK WAVES

1¢ ASSUME NO NEN SHOCK WAVES
2y OTHERWISE

IFC=1

CALL PREP

IF{KN«LT+2) RETURN

CALL INPT )

CALL UBDY

CALL DBDY

IF(NJJ.GT.0) CALL PACKJ

IF(IFC.EQe2) CALL NEWJ .

CALL GEOM(Z2¢ASsHINIKNe2) 1RSeTSeDSe1e2¢DIST)

QAS=V(N+KN»s 2} *AS

DO 1 K=1 4NN

GI(Ke1)=QI{K+114G6S

CONTINUE

RETURN

END
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SUBROUTINE STORMIXTITY) '

SET UP THE VALUES OF THOSE PARAMETERS WHICH CHANGE WITH THE
LONGITUDINAL CCORDINATE )

COMMON /B1/ BU4UI»Cl403+Z(10)e TIME2OPH NN oNoNCH ¢RSLsCURVE

COMMON /B27 HU2T 427923 sVI2T792T 02 ) eHLI2791Ge23sHRI27¢1052)»
SVRI27o10e23 VL (2701023 oVJI27+1092)esXJE27 0102} eJT027e2T7¢239sKNeNJIJ
COMMON /B3/ NKU2T) eNJ(2T}sDXoDToDIST oHMIN oV MINe ITYPEsTOe0C{2T910)
$SeDS

COMMON /BHB/ TI427e2)oXT{2792)eHIM(2T7¢2) eVI2T023 40 T(2762)Y e WI (2702}
$CT(2T792) e CHI2T+235CVI270 2
COMMON/BE/AAL B BLeCC1loSNKsIDCeSP1eXPGLeSP2eXPG2

COMMON /B3/ ACCU+ACCUXACCUYsHDRY  CC

COMMON /B810/ DXCHesDXRS+DDXCHe¢DDXRS )
COMMON/B16/AAAsBEB9CCCoTDIRTCoRMN oRAY
COMMON/BIT7/FINF o BETTAoALPHASTOo TP o VSFoSPT

DATA IITYPE/O/

DATA Z{13/0./

GGlAIB Y TSARTiUoxAscAsYs Y4+l ¢AsBsY+B4D+1, )

FCTAZAREA MODIFICATION FACTOR DUFE TO CURVED ROADWAY
RADLSZDIMENSICNLESS RADIUS OF CURVATURE {RADIUS/B({11))
IF{CURVE.GT-0.1E~5) RADLST=1./CURVE/B(11}

DXPGL=XPG1/8(11}

DXPG2=XPGC2/8(11)

IFECURVE«GT 0.1E-5) FCTAZ1.+(C(22}+4DXPG1+DXP62~X) /RADLS
IFCIITYPELEQsU) IITYPEZITYPE
IF(TTTTaGTeTO#600%B(3121/B(111oANDABS{Z{13)alToBo0001) ZU1)=TD*6 (e
$+3(12)/B(11)

K=X/DX+1.9399393 '

XRAIN=CU(303+TTTT

IFIN-NCH) 2¢10:13

C{24)=0.

B(29)=0.

IFIX.0T.C{22}) GOTO 4

XL=X+8{11}

IF(ABS(AAL )} LT.0.1E~-20) COTO 1
SATO=BB1/(4.%*AAL)*SARTISB1*BB1 416141/ (4asSARTI(AAL*AAL} ) 2AL OC(Go2A
$A1+BB1+4.«SART{ AAL#+AALI)+SARTI(BBL*BB1+1,))
RSXZ(2.%AA1*XL+RBB1}/i{0.2AA2)sGG{AALIBBIsXL)+T1a/ {8 a3SARTIAALI®AAL)) 2
SALOG(8.2AAL*AAL*XL+4 o#AAL1sBB1+4,.3SORT(AAL#AAL)2GC {AAL1¢BBLoXL) ) -SAT
$0

G070 9

RSXZSQRT(BB1l*%2+1.)%XL

STRSX/B(11} ’

TANZ=—(2.xAA1*sXL+EB1}

BUBIZATAN(TAN)

DS=DX/COS(B(8))

GO0TO0 5

IFUINTIXPG1)« EQa0) GOYO 7

IF{XaLEL.IC{223+DXPG1}) GOTO ©

BUB8IZASINI(SP2)

STRSL/BL1IL)+(X--C(22))Y/7COS(B(8))

DS=DX/C0S(B(8})

GOTO 5

BIEIZASINISPL)

STZRSL/ZBC11I+( X~C(223)/7C0S{B(8)})

DS=DX/CO0S{B(8))})
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11

41

12

31

32

14

21

51

IF(IITYPE.NE.G) GOTO 8
PRAIN=C(22)+DXPG1+DXFG2-XRAIN
KPR=PRAIN/DX+1.,9%999
IFIKPReGE.2) HINYKPR=1+1 }=HMIN
IF(PRAIN.GT DX} H(Nele2)=HDRY
IF(X-PRAIN) 15¢15,16
IFCITYPE.NE.2Z) GO TO 16
IF{XRAIN=X) 15+15,16
B(8)=B(4)

DX1=FLOAT(K~1)+DX~X
IF(ITYPEL.EQ.5} GO TO 14
IFCITYPE.NEL2) GO TO 12
TFUXRAINGGTLX) GO TO 11
€C(24)zp.

B(23)=p.

G070 15
KRAINZXRAIN/DX+1.99993
IF(KRAINGNEK) GO TQ 12
IFtKeGE«2) GOTO 41

B{23)=g0.
Cl24)=q.
G070 16

DXZ2=XRAIN-X
DX3=XRAIN-FLOAT(K-2)#DX
B(ZS):QI(K-IVI’*DXZ/DX3*B(18)&B(12)
Cl24)=VI(K~1+1)+DX2/DX3

GOTOo 16

IF(KeGE.2) GOTO 31
B(291=0I(Kel)sB(18)+B(12)
Cl24)=VI(Kel)

G0T0O 32

8(29):(OI(K'IJ-(GI(K'1)—0I(K-111))tDXIIDX)*B(la)‘B(IZ)

C(ZQ):VI(Kvl)—(VI(K'l)-VI(K—Jvl))*DXl/DX
IF(IITYPE.EQ.3-AND.XRAIN.GT.(C(ZZ)*DXPGI*DXPGZ))

GOTO 16

IF(IITYPE.EQ.3.AND.XRAIN.LT.(C(ZZI*DXPGI*DXPGZ)) GOTO 15

IF(ITYPE.EG.1) GO TO 156
WT=CT(K+1)

TF({K.GEL2) HT:CT(Kvl)-DXl/DX*(CT(Ktl)—CT(K‘lvl))

IF(XRAIN-WT) 15,15,1¢
PRAINZC(21)-XRAIN
KPR=PRAIN/DX+1.99999

IF{KPR.GE +2) HENsKPR=1+1)=HMIN
IF(PRAIN.GTLL X} H{Nels2)=HDRY
IF(PRAINLLT.X) GO TO 21
C(24)=g.

B(29)=p.

CGOoTOo 15

IF(KPR.NEK) GOTO 22
IF{K.GE«2) GOTO 51

B(z229)=uw.

C(24)=p.

CoT0 23

DX2=X~PRAIN
DX3=FLOAT(K~1)*DX~PRAIN
B(ZS):GI(Kvl)tDXZ/DXBtB(lS)tB(lZ)
C(24)=VIIKsl) «DX2/DXZ

GOTO 232
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115
1186
117
il8
119
120
121
122
123
124
125
126

128
123
130
131
132
133
134
135
136
137
138
133
140
141
142
143
144

145 -

146
147
143
149
150
151

22

61

23

13

16

17

IF{K.GCE2} 5070 B1
B{29)-QI(Ks1}sB(18)+B{12]}
CL24=VIiKs1})

GOT0 23 ' .
BE29)=(QT{Ke1I~{GIIK+13-0T(K-1+2023%DX1L/DX)#B{18)28B(12)
Cl243=VIIK L3 ~{VI{Ke 1) ~VI{K—101))¢DX1/DX
IF(X-PRAIN} 15915¢16

8{26)=0.

60 10 17

Cié24)=0.

B{239)=0.

B(26312B8{32)

IFLITYPE.EG.1) CALL RAIN(ZPTTTT)

C{26)=B{2c)¥/B (19}

C(231=B{23)/B (1T}

IFIN.EQ.NCH) Cl2Z3=C(12)

IF{NeGTaNCH} C{23)=C(35}

B{271=0.

IFENCEQuNCHoAND -B{5)oCGEUa3) CALL INFLT(2TTTT)
IFINoGTNCH.ANDB(35)eGED 3) CALL INFLTU2+TTTT}
C27¥=B(271/B(13)

IFINNE.NCH) BI(29})=0.

- C(29)1=8(22)/7(3(123*B8(12)}

IF{NeGTNCH) B(8)=C{2u)

C(BI=SIN(B(E}+B(8})

CL{8)=SIN(B(3))

€(9)=C05{B(3))

CU2I=SIN{ATAN(SINIB{4)}/C(8) )]}

C(36)1=B(36)

Cl37)=B{37}

IF(N.EQG.NCH.ANDB(5)oGE.D,3} C{36)=B(38)
IFINSEQuNCHANDB{5)a06Eo0.3) CU37)=B(39)
IFINGToNCH.AND 4B (35J4CE«0.3) C(361=B{38)
TF{NeGToNCHAND B (351 .GE4lio3) C{3T)=B(32)
IF({CURVE-GTal0o1E~5a ANDoNaNEJNCHY} CU26)=FCTA:C(26)
IF(CURVEo BT o0e1E-SsANDeNNE JNCH) CU27)ZFCTAC{27)
RETURN

END

244




W NOn&sHWwN -

82

83

84

H

SUBROUTINE TYPE4

SET UP THE GUYTER FLOW CONDITIONS FOR TYPE 3 MOVING RAINSTORM
THE ADVANCING WAVEFRONT REACHES THE ROAD CURSB

COMMON /B17/ B(uR)eC(40) s Z(1D) s TIMEsOPHe NN oNoNCHeRSL s CURVE
COMMON /7B27 HE27 27+ 2) sV 2 Te27 923 eHL(2T¢10¢2) e HR(279v1002)
SVRI2Te10 23 VLUZ2T7010e2) o VJI(270109¢23e XJ(2701022)eJdIt2792Te2)eKNeNJIJ
COMMON /B3 / NK(27) sNJIT27 )eDX DT eDIST sHMINoVMIN® ITYPE2IC+0CL27210) ¢
$Se¢DS

COMMON /8B4/ TIt27e2)9XI(2702)oHI(2702) sVI(2702)eCTl2T¢2)eHWI(2T 2}
SCTL2792) yCHI2T¢230CVI2702)

COMMON /B8B/ ACCU+ACCUXsACCUY eHDRYCC

COMMON /B10/ DXCHsDXRS»DDXCHsDDXRS

DIMENSION VV(2)}FF(2)

ITYPEZ]

CALL INBDY(L1oXXeHHeTTe2)

N=NCH

CALL STORM(OD.eTIME)

NCT=0 .

HP=HINCHs1 2}

I=1

VVII)=(a1

CALL GEOM(2¢A+HPsR+T oDl v2+04)

CALL FRIC{VV(I)eHP +F eRIREIRECIIR 2D W)
FFIIIZC(B8)Y~-Cl4)eF/B(13)+8BS(VVIII)»YV{I)/R
IF(ABS(FF(I)}«LT.ACCU) GO YO 84

IF(I.EQ@.1) GO TO0 83

NCT=NCT+1

JFINCT.GT.20) SS=SQRT(-1.)
VVVZ(FFU1)#VVI2)-FF{2Y+VV(1))I/7(FFL1)FF(2))

vvilli=vvi(2}

vv{2iz=vvv

FF(1)=FF(2)

GO TO 82

I=2

vv(2)=0.0001

G0 TO 82

VINCHv192)ZYVII)

KN=XI(1¢2)/DXRS+1.00001

XT(191)=XTL1+2)

DO 10 N=2¢NN

DO 9 KZ=1sKN

HINeKos2)ZH(11K»2)

VINeKe2)ZV(14Ke21)

JTI(NsK221ZUI(1eKe2)

CONTINUE

NK{N)=KN

HI(N2)=HI(1,2)

VIINI2)=VI(1+2)

ITIN»2)=ITIl1+2)

CT{Ns2)=CT(1+2}

CHIN»2)=CH{1+2)

CVINS2)=CVI(1l+2)

WI(N#2)=WI(1e2)

XT(Ne2)=XTI(1+2) ’

QI(N+2)=QI(1+2)

XI(Ne12ZXIt191)
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H{NCHeNoe 2y ZH{NCHs1 42}
VINCHoNe 23 SVENCHo1 02}
IFINJJ.ER.8}) 60 TO 10
NJINIZNSY

DO 8 J=1oNJJ
XJINsJ 021 XIU1 0d 22}
VIiNeJeZIzVI{1ede2)
YRIN+Je2IZVR(1eJe2})
VE{NsJ»23ZVLL10de2)
HUEN®J o2 )=HL L1 e S52)
HRINsJ212IZHRI{1+vI92}
CONTINUE

CONTINUE

RETURN

END

246




LCO~NIITMFTWNE

SUBROUTINE UuBDY
SET UP UPSTREAM BOUNDARY CONDITIONS
COMMON /B1/ B(QO).C(QU)Q2(10)1TIME-OPHuNNvN'NPH-RSLoCURVE
COMMON /B2/ H(2T722702Y 9VI(2 7927 92) o HL(2701092)sHR(2Z2701002} ¢
SVRI27¢10 2o VLI27010s2 ) e VWI(2T7010:239 XJ(2T21002)eJdT(2762T792)2KNeNJ
COMMON /B3/ NK(ZT)vNJ(Z7)oDXvDT:DIST9HMIN0VMIN.ITYPE:IO.OC(27110)V
$SsDS
COMMON 7887/ ACCU-ACCUX:AG:UY;HDRY-CC
COMMON /B14s INET(27)
IFUITYPECEQe2 «ANDSIWET(N)EQe0) HINy 1s 2} ZHDRY
IF{ITYPEEQo5 «AND o IWET (N} EQeD) HINs» 1e 2)=HDRY
CALL STORM(D.sTIME)
IF(B{26) e LTeACCUSANDHIN 91 91)elTealel #HDRY) HENoie2)=HDRY
IFCHIN¢1+2)4CToACCUY) RETURN
XJI2ZXJ(NsL »2)
TFUXJ2e6T 0000 ANDeXJ2 oL T DX JT{Ne2+2)=1
IF(JI(Ne2+11EQel) GOTO 20
IF(JUI(Ne2+2).EQel) GOTO 10
IF¢ITYPE.EG.2) GO TO 5
IF(N.EQGe1.0R«NeEQ.NCH} GO TO 5
N1=N-1
TF(ABS(H(Ns1lol)- H(Nl:lvl)).GT ACCU)Y GO TO
IF(ABS{VI(Ns1s1)-V(NL+1l+1))eGT«ACCU} GO TO
IFCABS(VINS2+1)~VI(NL1s2s1)).GT.ACCU) GO TO
IF(ABS{H{N»2+13-H(NL1+2+1))eGCT.ACCU)} GO TO
IF(ABStHIN®2+2)-H(N1+2¢2))eGT<ACCU) GO TO
S IFCABS(VING292)-VINL+2+21)}.GTaACCU) GC TO
HiNels2)ZHI{N1v1s2)
V(Nes1s2)ZVIN1s1se2)
RETURN
S CALL UPT(H{(NeYel)sVINeloe1) ¢+ HINe2o1)e VINe2¢1)oHINI2s2)0VI(Ne2s2)
$DX}
RETURN
10 YF{XJ2.LTJACCUX} GO TO 12
H2ZH(NsL 1 J+ CHI{N#2 1 )-H{Nele1))eXJ2/DX
V2ZVINs1 91D+ VINS291)-VINe1v1)]1*XJ2/DX
11 CALL UPT(H(NwsL1sLl)eVINs19s1) rHZsV2sHLINe122)sVLINel¢2) ¢eXJ2)
RETURN
12 HIN»1eZ2Z)=HLINv1+2)
VINsle2)=VLI(Ne1,2)
RETURN
20 IF(JUI{Ne2:+2).EQ.0) GOTO 22
IF{XJ{Nels 1)L TLACCUX) GO TO 21
H2-H(N+s1 «2J+(HLINe1rv 1) —HN2101) ) 2XU2/XJ(No1s1)
V2ZSVIN9sl el )4 (VL(Noe 1o 1) -V (Nv1sl))2XJ2/XJ(Nselsl)
G0 T0 11
21 CALL UPT(HL(Nsle1)oVL(Ns 23 1)+0avBeeHLINe1¢2)eVLINS1¢2)eXJ2)
RETURN
22 IF(VJUINe1e1).LTe0e) GO TO 23
H2ZHIN 91 o1 J+{HL{Nele 1) -H(N+1+1})sDX/XJ(Ne1lel)
V2ZVINsY o1 I+ (VL (Nele 1)~V (INe1913)2DX/XJI{Nr1s1)
CALL UPTIH(Ns19l)sVINele ) vH2eV2oHINI212) eVINe292)0oDX)
RETURN
23 HIZH(Ns2 v1 )+ (HR(Nele1) —HINs2+1))*DX/7(DX~XJI{Nsls1))
VIZVIN22 91 )4 {VRINe1» 1} -V N ¢291))sDX/{DX~-XJINs191))
CALL UPT(HI1eV2IsHI(NSZ¢1) s VINo2¢1) oHINI292)sVINv2:c21+DX)

v o, n
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END
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SUBROUTINE UPT(HI1s VIsH2: V2 sH3oV3eX)

COMPUTE V AND H AT THE UPSTREAM GRID POINT

COMMON /B1/ B{40)+Cl80)+Z(10)e TIME «OPH e NN ¢ Ne NCHeRSL ¢ CURYE
COMMON /B2/ HU27¢27¢2)sVI{2792792)+HL(2T7020¢2)9eHRI2791002 3¢

SVRE27e10 92 3¢ VL (274102 ) s VI(2T01092)e X127 41023 oJT(2T+s2742)sKNeNJIJ
COMMON /837 NK(27)sNJ(27 3eDXeDTeDIST sHMIN ¢VMINs ITYPE #I0o0C{270+101}s

$S» DS

COMMON /B4/ TI(27¢2)sXI (27 s2)oHIU27¢2) oVII2752)9QIt2702)eWI{2T 02}

$CT{27e2) s CHI2792}4CV (270 2)
COMMON/B6/7AA1+BB1¢CC1le SNKs IDGs SP1¢ XPG1 sSP2¢XPG2
COMMON /B8/ ACCUWACCUX »ACCUY sHDRY ¢ CC
DATA C22/0.7

IF(IDGEQele ANDeaNJEQNCH) CTMINZ HHIN:B(IS)/C(S)/TAN(ASIN(SPZ))/8(1

$0)

IF(IDGEQelaAND «NeEQGaNCHANDCT(192) oL TCTMINY CT(IQZ)"CTMIN
JFI(NJEQG.NCH) CALL GEOM(2 yAMINeHMINsR#TsDe192¢04)
CALL GEOM(2+ADRY +HDRY+ReTeDe1v2eD.)
TIMZTIME~-DT

CALL STYORM(QO.+TIM)

CALL GEOM{Z2sA19sH1sR1+T1e01l9ls1e0-?
ciz=czey

IF(N.EQ.NCH) C1=C22

€9=C{9)

C2e=Cc(26)

c27=Cc(27)

€29=C(29?

CALL STORM{Oa.«TIME)

c2z=Cc{28)

Ce=zCt9)+(C9

C26=C(26)+C26

C27=C027)+C27

€28=C(29)+C283

CALL STORMIX+TIME)

CALL GEOM(2¢A3+H3eR3+T3¢D03 91 ¢29X)
€3=C(39)+C9

C26=Cl261+C26

C27=CL27)+C27

€C28=C(29)+(C23

CALL STORMIXsTIM)

CALL GEOM(2¢A29HZ2eR29T2¢ 02 91 91 eX)
CIZ({CIND+C3) /4.

C26=(C(26)1+C26)/ 4.

C27=(C(27)+C27)/4.

€C29=(C(223+4C29)/4.

T={T1+¢T2+4T73) /32,
AZAI+A2-AZ42.,+DT*( (CO*x (C26-C27)xC{ 13 )+ T+B (11 )«B(10)/BL18))+B(11}
$*C28/7(BL10)I*C(5) ) ~(V2Z*AZ+VI*¥A3-C1-C2)»(DT/X)
TF(NEQeNCHeAND e ICCeaEQ el eANDALTLAMINY A=AMIN
IF{A.LT.ADRY) AZADRY

CALL GEOM{2rAsHINt192) 2R sT D21 +290.}
IFINEQeNCHAND «IDGoFQ el eANDeHIN#1 92 oL TeHMIN) HINp1+2)=HMIN
TFCHINe1 #v2) L TeHDRY) H(N 1 ¢+2)=HDRY
TFINCEGeNCHeAND « NK (1 )4GT o2 ) CALL INPDY(3900vH(Ne1e2)eTs2)
CALL GEOM{2¢AsH{(Ns192)voRsT D0l 2290s)

VINy19e2)=C2Z/A

IFINLEQsNCH) C22=C2
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RETURN
END
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SUBROUTINE WRITJ !

OUTPUT INFORMATION FCR DISCONTINUITTES

COMMON /8B1/ B(QO)-C(HD]n2(10)-TIME:OPHvNNeNvNCH'RSLvCURVE
COMMON /B2/ HU27492792) 9VI2T792T 223 s HL(2791002)¢HR{Z7010:212¢

SVR(27e1092)e VL2779 10230 VI(279109232 XJ(27210¢2)eJTt2762T92)9KNeN U

COMMON /B3 7/ NK(27)vNJ(27)vDX-DTvDISTvHHINvVNIN'ITYPEvIOcOC(27le)0
$SeDS

COMMON /B7/ NL(27510)sNRI27¢103eSL(27¢10)rSR(ZTe10)sFLI2710)¢
SFR(27¢10) e NFJeSFUPFFJ

WRITE(69200)

200 FORMAT(/* DISCONTINUITItS:'IQX-'TYPE'-5X1'XJ'04X0'VJ'113X"V'rSXv

1°H s 6Xe" Q" 26X e "FRY oS Xe "REL FRY o4 Xe *RENOS?24Xs*CRI RE'¢3Xs*FRIC®,
26X s *SF e SX e FT" 12X *E 24X +*0CCo"*)

DO 30 J=1lsNJJ

XJUZXJ (Ned 020

VJJZVJ(Neds2)

VLL=VL(NsJs2)

VRRZVR(NsJ2)

HRRTHR (NoJ22) .

HLLZHL (NsJ 2} *

CALL STORM(XJJ»TIME)

CALL OPHEAD

CALL GEOM{2sALLeHLLePLLs TLL s DLL 919 2¢ XJJ)

CALL GECM(2¢ARR*HRR+sRRRv TRR+DRRe 19 2¢ XJJ}

GL=VLL#*ALL

GR=VRR*ARR

CALL FRIC(VLLSHLLIFLLIRLLsREL+RCLoKL +29XJJ)

CALL FRIC(VRR+HRR¢+FRR+sRRR+RER¢RCR¢KR 12 eXJJ)
FRIZFRTYSTUIVLL-VJJI+DLLy (PHsC(1)9CES}oC(2),C(20)021)
FR2Z=ZFRTIST((VRR=-VJJIsDRR*OPHsC{1)sC(5)eC (31 C(20)+2)
FI=FRTSTU(VLLsDLL yOPHsC(L)eC(5)}sC{9)eC(20) ¢2)

F2z FRTST(VRRIDRR.OPH-C(lva(S’nC(Q)vC(ZG)'Z)

IF(ARR.LT.ALL) GO TO 20

WRITE(6+s201)XJdJrVIJo VLo HLL ¢QGLeF1loFRIVRELIRCLIFLINeJI)eSLINeJ JeKL
$SeNLIN?J) ¢OCIN»J) s VRReHRR sQR» FZIFRZtPERvRCRvFR(N'J)sSR(NIleKRo
SNRIN»J)

201 FORMAT(/4X s JUMP ® s2FT7al ¢ LEFT ®93F7e492E3.494E9.3,213+4X2A6/

$25Xe *RICHT s 3F 789 2E9a 49 4E3.3¢213)
€0 T0 30

20 FRIZFRTISTUUIVJII-VLL ) e DLL 9 OPHoCL1) ¢CIS)eC{9)sC(20)+2)

FR2ZTFRISTI(VJII-VRRI+DRReCPHyCl1) sCLE o C () Cl20)y 2}
WRITE(GEe202)XJJeVIJs VLL o HLL ¢ QLeF1oFRLeRELsRCLeFLENoJ) o SLINeJ) oKL
$SoNLINoeJ) »OCINvJ)sVRRWHRR WQRsF29FR2+RERVRCReFRI{NeJIoSRINvJ) v KR
SNRI(NsJ)

202 FORMAT(/4X »*SURGE® 92F7 e84 s* LEFT *23F7e402E3424E 93639213 :4XvAG/

$25Xs *RICHT *93F 7 o890 2EQe 49 4E3e3+213)

30 CONTINUE

RETURN
END
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7. Test Data
7;1. Test input ‘

" Input data for run 1 on the roadway with curb-type gutter are:

Card . :
No. ITYPE NOUT NN TEND DDXCH DDXRS - CURVE
1. 1 5 5 10.0  100.0 4.0 0.0
B(1) B(2) B(3) B(4) B(5) B(6) B(7) B(8)
2 1.0 1.0 1.0 0.05 0.0034 0.0 0.1575 =%
B(9) B(10) B(11) B(12)  B(13)  B(14)  B(15) B(16)
3 - - 400.0 - - - - -
B(17) B(18) B(19) B(20)"  B(21) B(22) B(23)  B(24)
4 - - - - 400.0 24,0 0.0034 0.0000121
B(25) B(26) B(27) B(28) B(29) B(30) B(31)  B(32)
5 28.5 - - - - - - -
B(33) B(34) B(35) B(36) B(37) B(38) B(39)  B(40)
6 - - 0.333  235.0 0.296 510000.0 0.662 0.0
NL DG Y(1) Y(2) Y(3) SUPEL TRFCT SPEED
7 2 1 0.0 -0.250  =0.625 - - -
SP1 XPG1 SP2 XPG2
8 0.0 0.0 0.10 3.0
AAA BBB CCC D RTO
9 20.0 *% 0.0 - -
FINF BETTA ALPHA TO SPIL
10 - - - - -
11 Punch any digit but 0 on column 3
*blank

*%any digit but 0

7.2. Test output

A sample of output data is shown on the following page.
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£6¢C

l'ﬁ.ttcsﬂutﬂ‘tttt‘t“.tt‘t‘t.0“.“30.‘033‘8.’!.“’3““3
t‘&‘t&vﬂﬂ.&a"ll.l“.‘a‘Q‘t‘t8“‘.0"‘0.‘300“‘..“‘.;
e s s TIME = i.448 (DIMENSIONAL TIME = 41.243 SEC.) ® 5 & 6 & 3t 2 5 % & & & 6 S BT T X VG SN
" & & & § €« F F ¥ € F H 2 T & & * T X ® * ¥ & ¥ € ¢ & & & T & * &K £ ¥F & & & I ¥ &£ € & € 2 & £ & S & x T T &
* & ¥ & % & ® £ £ & &£ ¥ € F & £ & & 2 T & £ & £ ¥ & &€ &£ & T & 4 & ® F & & ¥ ¥ T 2 ¥ % & & ¥ & & & &£ ¥ & & &
FOR OVERLAND FLOWsSECTION 3
RATNFALL INTENSITY = 20.00 (INo/HR) INFILTRAION RATE = 4000 {IN «/HR)
CRITICAL SECTION LOCATES AT X= 0299
X v H Q FROUDE RFYNOLDS CRY RE F FRIC SLOPE F E VIFPS) HU{FT} QICFS)
+0UU . 0ouo «01G7 000 L0000 «€626-19 <000 g - -- - .opo . »3886-02 .0CC
01U S 0197 «0136 «336-03 «5632  L16U+03 «646+03 4 454400 L184-~01 O o272+00 .708-02 .193-02
020 .02u3 «0236 4726-03 «8107 o3U2+03 755403 4 253+00 »208-01 £ 425400 4853-02 .362-02
030 + 0387 LO257  102-0U2 1,0023 ,424+03 .825+03 4 .188+00 .23€-01 1 548408 .929-p2 .509-02
04U « 0506 <0265 +134~02 1.2574 «F52403  o871+4U3 4 .148+400 ,293-01 O «£93+00 «360-02 «670-02
«050 » 058U «0274  «159-02. 1.4178 6561403 +916+03 4 130400 .325-01 1 800400 4921-02 L793-02
t & B 2 & % & ¥ ¥ t & ® & ® F ¥ & & & & & % L & ¥ 2 3 & K & & ® F ¢ ¥ ¥FT & % F & & T & X © L £ £ T T & © ¢
THE CONDITIONS CN INTER POUNDARY ARE?
N X H v Q FR L FR R CNJ H CNJ V XJDoeT T
1 0623 L0268 .075% .202-02 187401 - - - - 2.0876
2 WLDEQ2 0282 LUEB55 .135~-02 L158401 - - - -— 209324
3 0587 .0281 JUB4 Yy «181-02 «155+01 - - - - * 345123
4 LUB82 .0281 LUBMO L130-02 L155+401 - - - —_ 3.7039
5 L0580 L0281 .UB3Y9 L179-02 .1%544+01 - - -— - 3.7801
5 % & X ¢ &€ & £ % & & £ ¥ &£ ¥ T & ¥ & & v« X F ¢ & ¥ &K X & € & & T & € & & ®* &K E T ¥ F £ € X W L & 6 & = B @
FOR CHANNEL FLOW
RATNFALL INTENSITY T 20.00 (INos/HR) INFILTRAION RATE = o000 (IN/HR§
CRITICAL SECTION LOCATES AT Xz 0824
X v H Q FROUDE REYNOLDS CRY RE F FRIC SLOPE F E VIFPS}) HI{FT? G{CFS}
00D « 0000 «2412 L000 0000 L9 8-1% 000 -0 -— - - < o0 «873-p1 000
254 220193 e2527 4190400 2.6354 +258+05 o244+04 S 4327-01 .262-01 0O 417401 ,.131+00 .950+00
50U e J124 CH127T 257400 2.£045 272405 L285+04 5 o392-01 o.367-01 0O 471401 149400 2129401
=750 <3184 «HZ9T  286+00 2.6127 «287+05 4249404 5 .386-01 .361-01 O 433401 L156+00 142401
1.000 ¢ 3215 U357 298400 2.5275 +293¢05 o250+04 5  o385-D1 4362-01 O 4484401 158400 149401
FLOW THROUCH INLFY IS @ = o298+LC (DIMENSIONAL DISCHARGE @ = 149401 CFS)
T ¢ £ % & € & € ¥ & % £ £ ¥ & & &€ ¢ ¥ & & ¥ & K & € &K & ¢ & € T B S & & & & & & & & & BB S & B & & & & ¥ T @

FOR OVERLAND

ACC COMP ERR

FLOWs SECTION 7

= ~2.092

CURR COMP ERR =

-~ol630 WITH VO

= 2113

@

VT =

14302 VIN =

1.331 vouT

2112







